Singularly Perturbed Convection Diffusion Problems

奇扰动对流扩散问题

基本信息

  • 批准号:
    0101563
  • 负责人:
  • 金额:
    $ 1.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Kopriva, DavidFrom: R. Bruce Kellogg [kellogg@ipst.umd.edu]Sent: Thursday, May 31, 2001 6:04 AMTo: dkopriva@nsf.govCc: kellogg@ipst.umd.eduSubject: Proposal No: 0101563 - AbstractProposal No: 0101563 - AbstractSome problems of mathematical and numerical analysis related tosingularly perturbed boundary value problems will be studied. Themathematical problems include obtaining sharp bounds for derivatives ofthe solution that take into account boundary layers, interior layers, andcorner singularities. The numerical problems include the development ofstabilized discretizations for these singularly perturbed problems andthe study of the best approximation properties of singular perturbationproblems.The proposed work studies physical systems in which some quantitiesundergo rapid changes in certain regions. Such systems include fluid flow,where the rapid changes occur at boundary layers, shocks, and interiorlayers. These systems arise in the design of fluid machinery, the studyof underground oil and water transport, the modeling of airflow overcars and airplanes, and other areas. The results of this research willbe of use in the development of more accurate computer simulations ofthese systems, with consequent improvements in the design of equipmentused in such real-world problems. In addition, the proposal providesfor regular visits of Professor M. Stynes to the U.S.; it is plannedthat Prof. Stynes will interact with graduate students in mathematics whoare working in related areas.
Kopriva, DavidFrom: R. Bruce Kellogg [kellogg@ipst.umd.edu]发送:Thursday, May 31, 2001 6:04 AMTo: dkopriva@nsf.govCc: kellogg@ipst.umd.eduSubject:提案号:0101563 - abstract提案号:0101563 - abstract将研究与奇异摄动边值问题相关的一些数学和数值分析问题。数学问题包括得到考虑边界层、内层和角点奇点的解的导数的明确界限。数值问题包括这些奇异摄动问题的稳定离散化的发展和奇异摄动问题的最佳逼近性质的研究。拟议的工作研究物理系统,其中某些数量在某些区域经历快速变化。这样的系统包括流体流动,其中快速变化发生在边界层、激波和内层。这些系统出现在流体机械的设计、地下油水输送的研究、汽车和飞机上空气流的建模以及其他领域。这项研究的结果将用于开发这些系统的更精确的计算机模拟,从而改进用于此类现实问题的设备设计。此外,该提案规定M. Stynes教授定期访问美国;Stynes教授计划与在相关领域工作的数学研究生进行互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Kellogg其他文献

Bruce Kellogg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Kellogg', 18)}}的其他基金

Singularly Perturbed Convection-Diffusion Problems
奇扰动对流扩散问题
  • 批准号:
    0303684
  • 财政年份:
    2003
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
n-Widths and Singular Perturbation Problems
n 宽度和奇异扰动问题
  • 批准号:
    9802225
  • 财政年份:
    1998
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Travel Support for Two Conferences
数学科学:两次会议的差旅支持
  • 批准号:
    9224645
  • 财政年份:
    1993
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Finite Element Methods forSingular Perturbation Problems
中美合作研究:奇异摄动问题的有限元方法
  • 批准号:
    8517582
  • 财政年份:
    1986
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
Some Problems of Modern Analysis and Its Applications
现代分析的若干问题及其应用
  • 批准号:
    7607642
  • 财政年份:
    1976
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
Approximate Methods For Solving Functional Equations
求解函数方程的近似方法
  • 批准号:
    7001751
  • 财政年份:
    1970
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant

相似海外基金

The Role of Perturbed Auditory Information for Self-motion in Gait
扰动听觉信息对步态中自我运动的作用
  • 批准号:
    10891772
  • 财政年份:
    2023
  • 资助金额:
    $ 1.18万
  • 项目类别:
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
  • 批准号:
    2238127
  • 财政年份:
    2023
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Loihi (Kamaehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the ocean?
EAGER:合作研究:洛伊希 (Kamaehuakanaloa) 海山最近的构造岩浆活动是否扰动了喷口流体循环和热液铁向海洋的输出?
  • 批准号:
    2220821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
A risk-varying and perturbed self-controlled case series design for assessing the safety of COVID-19 vaccines in a large health care system
用于评估大型医疗保健系统中 COVID-19 疫苗安全性的风险变化和扰动自控病例系列设计
  • 批准号:
    10420952
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
  • 批准号:
    10365114
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
Novel tools for modelling normal and perturbed haematopoiesis
用于模拟正常和扰动造血功能的新工具
  • 批准号:
    MC_PC_21043
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Research Grant
EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Lō'ihi (Kama’ehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the oce
EAGER:合作研究:LÅihi (Kamaâehuakanaloa)海山最近的构造岩浆活动扰动了喷口流体循环和热液铁向海洋的输出
  • 批准号:
    2221282
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Standard Grant
Molecular basis of cognitive aging caused by perturbed endocannabinoid system
内源性大麻素系统紊乱引起认知衰老的分子基础
  • 批准号:
    22K17815
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A risk-varying and perturbed self-controlled case series design for assessing the safety of COVID-19 vaccines in a large health care system
用于评估大型医疗保健系统中 COVID-19 疫苗安全性的风险变化和扰动自控病例系列设计
  • 批准号:
    10623332
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
Leveraging Variant-perturbed Gene Regulation to Support Precision Medicine in COPD
利用变异扰动的基因调控支持慢性阻塞性肺病的精准医疗
  • 批准号:
    10583539
  • 财政年份:
    2022
  • 资助金额:
    $ 1.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了