n-Widths and Singular Perturbation Problems
n 宽度和奇异扰动问题
基本信息
- 批准号:9802225
- 负责人:
- 金额:$ 0.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Singularly perturbed partial differential equations are used to model boundary and interior layers in transport and fluid flow, and in high frequency wave propagation. It is difficult to approximate the solution to these equations because of regions of rapid change in the solution. The best approximation properties of solutions to some singularly perturbed linear partial differential equations will be studied. The research will build on some recent work of Kellogg and Stynes that treats asingularly perturbed self adjoint problem. Equations that model convection and wave propagation will be studied. The goal is to obtain the best approximation properties (in the sense of Kolmogorov) when the data of the problem are restricted to have a specified smoothness. A successful resolution of these best approximation problems will lead to asymptotic expansions of the solution with minimal smoothness requirements on the data, and hopefully to better numerical methods for the numerical computation of these solutions.Physical systems that involve boundary and interior layers are of considerable importance in industrial applications. A typical example is the turbulent layer of air near an aircraft wing. Wave propagation problems, arising e.g. in radar or ultrasound are important in both medical and military applications. These seemingly different problems are similar in that there are phenomena taking place over a very short span of distance or time. This leads to difficulties in calculating the behavior of such systems. The research under this award will study the basic approximation properties of the equations governing these systems.
奇摄动偏微分方程被用来模拟边界层和内部层的运输和流体流动,并在高频波传播。由于解中的快速变化区域,很难近似这些方程的解。本文将研究一类奇摄动线性偏微分方程解的最佳逼近性质。这项研究将建立在凯洛格和Stynes最近的一些工作,对待奇异摄动自伴问题。将研究模拟对流和波传播的方程。我们的目标是获得最佳的逼近性能(在柯尔莫哥洛夫意义上)时,问题的数据被限制为具有指定的平滑度。一个成功的解决这些最佳逼近问题将导致渐近展开的解决方案与最小的光滑性要求的数据,并希望更好的数值方法,这些solutions.Physical系统的数值计算,涉及边界层和内部层是相当重要的工业应用。 一个典型的例子是飞机机翼附近的空气湍流层。 例如在雷达或超声中出现的波传播问题在医学和军事应用中都是重要的。这些看似不同的问题是相似的,因为有现象发生在一个非常短的距离或时间跨度。这导致计算这种系统的行为的困难。该奖项下的研究将研究控制这些系统的方程的基本近似性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Kellogg其他文献
Bruce Kellogg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Kellogg', 18)}}的其他基金
Singularly Perturbed Convection-Diffusion Problems
奇扰动对流扩散问题
- 批准号:
0303684 - 财政年份:2003
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
Singularly Perturbed Convection Diffusion Problems
奇扰动对流扩散问题
- 批准号:
0101563 - 财政年份:2001
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
Mathematical Sciences: Travel Support for Two Conferences
数学科学:两次会议的差旅支持
- 批准号:
9224645 - 财政年份:1993
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Finite Element Methods forSingular Perturbation Problems
中美合作研究:奇异摄动问题的有限元方法
- 批准号:
8517582 - 财政年份:1986
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
Some Problems of Modern Analysis and Its Applications
现代分析的若干问题及其应用
- 批准号:
7607642 - 财政年份:1976
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
Approximate Methods For Solving Functional Equations
求解函数方程的近似方法
- 批准号:
7001751 - 财政年份:1970
- 资助金额:
$ 0.68万 - 项目类别:
Standard Grant
相似海外基金
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
- 批准号:
2888423 - 财政年份:2023
- 资助金额:
$ 0.68万 - 项目类别:
Studentship
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
- 批准号:
19H01794 - 财政年份:2019
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Painlevé paradox and geometric singular perturbation theory
Painlevé 悖论和几何奇异微扰理论
- 批准号:
1939397 - 财政年份:2017
- 资助金额:
$ 0.68万 - 项目类别:
Studentship
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
- 批准号:
1616064 - 财政年份:2016
- 资助金额:
$ 0.68万 - 项目类别:
Continuing Grant
Geometric Singular Perturbation Analysis of a Mathematical Model of Stem Cells
干细胞数学模型的几何奇异摄动分析
- 批准号:
478556-2015 - 财政年份:2015
- 资助金额:
$ 0.68万 - 项目类别:
University Undergraduate Student Research Awards
Phantom: A topological method to analyze macro-system and its singular perturbation
Phantom:一种分析宏观系统及其奇异摄动的拓扑方法
- 批准号:
15K13532 - 财政年份:2015
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
- 批准号:
24340026 - 财政年份:2012
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Singular perturbation/bifurcation analysis of the cardiac sinoatrial node model in consideration of its heterogeneous structure and the study on the generation mechanism of synchronized oscillations
考虑异质结构的心脏窦房结模型奇异摄动/分岔分析及同步振荡产生机制研究
- 批准号:
24500274 - 财政年份:2012
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
1109587 - 财政年份:2011
- 资助金额:
$ 0.68万 - 项目类别:
Continuing Grant
Normal forms for superintegrable systems at singular points and their perturbation problems
奇点处超可积系统的范式及其摄动问题
- 批准号:
22540180 - 财政年份:2010
- 资助金额:
$ 0.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)