Contact and Symplectic Structures and Holomorphic Curves

接触和辛结构以及全纯曲线

基本信息

  • 批准号:
    0102298
  • 负责人:
  • 金额:
    $ 81.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-15 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

DMS-0102298Helmut H. HoferThe main tool for most of the proposed projects is a particularly adapted theory of holomorphic curves, which has been developed by Dr. Hofer and his co-workers in recent years. The fact, that there is such a close, but completely unexpected, relationship between some important class of dynamical systems and a suitable theory of holomorphic curves has deep implications. Immediately it makes it, in principle, feasible to relate questions about large classes of dynamical systems to recent mathematical theories like quantum cohomology, Gromov-Witten invariants, and in low dimensions even to Seiberg-Witten invariants. One of the main goals of this project will be the development of a mathematical machinery for constructing global surfaces of section for three-dimensional Reeb flows and generalizations thereof. In practice this means that the study of certain three-dimensional dynamical system can effectively be reduced to two dimensions. The other goal is the development of a symplectic field theory. Particular cases of such a theory are Gromov-Witten invariants and Floer Homology. Many physical systems like the flow of an incompressibleideal fluid, the movement of a satellite under the gravitational forces of celestial bodies, or the movement of charged particles in a magnetic field, to name a few, are examples of so called dynamical systems. The mathematical theory of dynamical systems provides tools to understand their complex behavior and allowsto make predictions. The particular examples mentioned above are of so-called Hamiltonian nature. For such systems, beginning with the work of Lagrange and Hamilton, geometric tools have been developed leading to the modern theory of contact and symplectic geometry. These geometries play a central role in connecting mathematical areas like dynamical systems, algebraic geometry and smooth topology. This makes it possible to employ powerful tools from different mathematical areas in the study of important classes of dynamical systems and also to use ideas from dynamical systems to study important intrinsic questions in other fields by new methods.
DMS-0102298 Helmut H. HoferThe的主要工具,大多数拟议的项目是一个特别适应理论的全纯曲线,这已开发的博士霍费尔和他的同事在最近几年。在某些重要的动力系统类和一个合适的全纯曲线理论之间存在着如此密切但完全出乎意料的关系,这一事实具有深刻的意义。原则上,它立即使得将大类动力系统的问题与最近的数学理论(如量子上同调、Gromov-Witten不变量)联系起来成为可能,甚至在低维情况下也可以与Seiberg-Witten不变量联系起来。这个项目的主要目标之一将是开发一种数学机器,用于构造三维Reeb流及其推广的全球截面表面。 在实践中,这意味着某些三维动力系统的研究可以有效地减少到二维。 另一个目标是辛场论的发展。这种理论的特殊情况是Gromov-Witten不变量和Floer同调。 许多物理系统,如不可压缩的理想流体的流动,卫星在天体引力作用下的运动,或带电粒子在磁场中的运动,仅举几例,都是所谓动力系统的例子。动力系统的数学理论提供了理解其复杂行为的工具,并允许进行预测。上面提到的具体例子是所谓的哈密顿性质。对于这样的系统,开始与工作的拉格朗日和汉密尔顿,几何工具已开发导致现代理论的接触和辛几何。这些几何在连接动力系统、代数几何和光滑拓扑等数学领域中发挥着核心作用。这使得有可能采用强大的工具,从不同的数学领域的研究中的重要类别的动力系统,也使用的想法,从动力系统研究重要的内在问题,在其他领域的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helmut Hofer其他文献

Employment and growth in an aging society: a simulation study for Austria
  • DOI:
    10.1007/s10663-006-9003-2
  • 发表时间:
    2006-07-26
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Josef Baumgartner;Helmut Hofer;Serguei Kaniovski;Ulrich Schuh;Thomas Url
  • 通讯作者:
    Thomas Url
Syplectic topology and Hamiltonian dynamics II
  • DOI:
    10.1007/bf02570756
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ivar Ekeland;Helmut Hofer
  • 通讯作者:
    Helmut Hofer
Wage differences between Austrian men and women: semper idem?
  • DOI:
    10.1007/s10663-007-9038-z
  • 发表时间:
    2007-04-24
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    René Böheim;Helmut Hofer;Christine Zulehner
  • 通讯作者:
    Christine Zulehner
Electron microscopic study of the origin and formation of Reissner's fiber in the subcommissural organ of Cebus apella (Primates, Platyrrhini)
  • DOI:
    10.1007/bf00234687
  • 发表时间:
    1980-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Helmut Hofer;Werner Meinel;Harry Erhardt
  • 通讯作者:
    Harry Erhardt
Orientations
方向
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helmut Hofer;K. Wysocki;E. Zehnder
  • 通讯作者:
    E. Zehnder

Helmut Hofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helmut Hofer', 18)}}的其他基金

IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
  • 批准号:
    1915835
  • 财政年份:
    2019
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1638352
  • 财政年份:
    2017
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Research in Mathematics
数学研究
  • 批准号:
    1128155
  • 财政年份:
    2012
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Symplectic Geometry and Dynamics
辛几何与动力学
  • 批准号:
    1104470
  • 财政年份:
    2011
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0603957
  • 财政年份:
    2006
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
  • 批准号:
    0505968
  • 财政年份:
    2005
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Standard Grant
VIGRE: Undergraduate, Graduate, and Postdoctoral Education in Mathematics at the Courant Institute
VIGRE:库朗研究所数学本科、研究生和博士后教育
  • 批准号:
    9983190
  • 财政年份:
    2000
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    9802154
  • 财政年份:
    1998
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence and Multiplicity Questions for Periodic Solutions of Hamiltonian Systems and Related Topics
数学科学:哈密顿系统周期解的存在性和多重性问题及相关主题
  • 批准号:
    8803496
  • 财政年份:
    1988
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
  • 批准号:
    2747173
  • 财政年份:
    2022
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Studentship
Construtions of log symplectic structures which characterize quadric hypersurfaces and projective spaces.
表征二次超曲面和射影空间的对数辛结构的构造。
  • 批准号:
    21K20339
  • 财政年份:
    2021
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
  • 批准号:
    2105578
  • 财政年份:
    2021
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Standard Grant
Conformal Symplectic Structures, Contact Structures, Foliations, and Their Interactions
共形辛结构、接触结构、叶状结构及其相互作用
  • 批准号:
    2104473
  • 财政年份:
    2021
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Continuing Grant
Nahm equations and hyperkähler structures on symplectic groupoids
辛群曲面上的纳姆方程和超克勒结构
  • 批准号:
    532253-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Postdoctoral Fellowships
Nahm equations and hyperkähler structures on symplectic groupoids
辛群曲面上的纳姆方程和超克勒结构
  • 批准号:
    532253-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Postdoctoral Fellowships
Foliations, contact structures, and symplectic structures on 3,4, and 5 dimensional manifolds
3、4 和 5 维流形上的叶状结构、接触结构和辛结构
  • 批准号:
    17H02845
  • 财政年份:
    2017
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structures of symplectic derivation Lie algebras and characteristic classes of moduli spaces
辛导数的结构李代数和模空间的特征类
  • 批准号:
    15H03618
  • 财政年份:
    2015
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Kuranishi structures on moduli spaces of stable maps in non-compact symplectic manifolds
非紧辛流形稳定映射模空间上的 Kuranishi 结构
  • 批准号:
    15K04850
  • 财政年份:
    2015
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Floer theory and study on symplectic structures
Florer理论的发展和辛结构的研究
  • 批准号:
    26247006
  • 财政年份:
    2014
  • 资助金额:
    $ 81.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了