Contact and Symplectic Structures and Holomorphic Curves

接触和辛结构以及全纯曲线

基本信息

  • 批准号:
    0603957
  • 负责人:
  • 金额:
    $ 112.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0603957Principal Investigator: Helmut HoferThe field of symplectic geometry has a large interface to othermathematical disciplines, like algebraic geometry, differentialtopology (particularly in small dimensions) and dynamical systemsto name a few. Dr. Hofer's project is concerned with the study offundamental aspects of symplectic geometry, its applications todynamical systems, as well as the development of mathematicaltechnology to address analytical problems arising in thefield. One part of the project is devoted to the study ofSymplectic Field Theory (SFT) which currently is the most generaland most comprehensive theory of symplectic invariants. Anotherpart develops a general approach for studying certain classes ofnonlinear elliptic partial differential equations as they occurin SFT. These methods potentially should have other applicationsin nonlinear analysis as well. A third part is devoted to theapplications of the theory to dynamical systems. The aim is thedevelopment of mathematical infrastructure, based on acombination of Floer theory and the theory of finite energyfoliations due to Dr. Hofer and his collaborators. This researchaims at the understanding of long-term behavior of iteratedarea-preserving disk maps with its numerous applications.Many physical systems like the flow of an incompressible idealfluid, the movement of a satellite under the gravitational forcesof celestial bodies, or the movement of charged particles in amagnetic field, to name a few, are examples of so calleddynamical systems. The mathematical theory of dynamical systemsprovides tools to understand their complex behavior and allows tomake predictions. The particular examples mentioned above are ofso-called Hamiltonian nature and have an intricate structureleading to extreme complicated dynamical behavior. Stabilizing abeam of particles in a partic= le accelerators, or sending aprobe on an interstellar journey, or understanding the dynamicsof a stationary flow of an incompressible ideal fluid areproblems whose mathematical underpinnings are touched by theresearch proposed in this project. Some of the methods developedpotentially have application to larger classes of partialdifferential equations of relevance in physics.
摘要:辛几何领域与其他数学学科有很大的联系,如代数几何、微分拓扑(特别是小维)和动力系统,仅举几例。Hofer博士的项目涉及辛几何的基本方面的研究,它在动力系统中的应用,以及数学技术的发展,以解决该领域出现的分析问题。项目的一部分致力于辛场论的研究,辛场论是目前最普遍和最全面的辛不变量理论。另一部分给出了一类非线性椭圆型偏微分方程出现SFT时的一般研究方法。这些方法在非线性分析中也有潜在的应用。第三部分讨论了该理论在动力系统中的应用。其目的是发展数学基础设施,基于Floer理论和有限能量叶化理论的结合,这是由Hofer博士和他的合作者提出的。本研究旨在了解迭代保面积磁盘映射及其众多应用的长期行为。许多物理系统,如不可压缩的理想流体的流动,卫星在天体引力作用下的运动,或带电粒子在磁场中的运动,等等,都是所谓动力系统的例子。动力系统的数学理论提供了理解其复杂行为的工具,并允许进行预测。上面提到的特殊例子是所谓的哈密顿性质,具有复杂的结构,导致极端复杂的动力学行为。稳定粒子加速器中的粒子束,或在星际旅行中发送探测器,或理解不可压缩理想流体的静止流动的动力学,这些问题的数学基础都被该项目提出的研究所触及。所开发的一些方法有可能应用于物理学中相关的较大类别的偏微分方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helmut Hofer其他文献

Employment and growth in an aging society: a simulation study for Austria
  • DOI:
    10.1007/s10663-006-9003-2
  • 发表时间:
    2006-07-26
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Josef Baumgartner;Helmut Hofer;Serguei Kaniovski;Ulrich Schuh;Thomas Url
  • 通讯作者:
    Thomas Url
Syplectic topology and Hamiltonian dynamics II
  • DOI:
    10.1007/bf02570756
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ivar Ekeland;Helmut Hofer
  • 通讯作者:
    Helmut Hofer
Wage differences between Austrian men and women: semper idem?
  • DOI:
    10.1007/s10663-007-9038-z
  • 发表时间:
    2007-04-24
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    René Böheim;Helmut Hofer;Christine Zulehner
  • 通讯作者:
    Christine Zulehner
Electron microscopic study of the origin and formation of Reissner's fiber in the subcommissural organ of Cebus apella (Primates, Platyrrhini)
  • DOI:
    10.1007/bf00234687
  • 发表时间:
    1980-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Helmut Hofer;Werner Meinel;Harry Erhardt
  • 通讯作者:
    Harry Erhardt
Orientations
方向
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helmut Hofer;K. Wysocki;E. Zehnder
  • 通讯作者:
    E. Zehnder

Helmut Hofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helmut Hofer', 18)}}的其他基金

IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
  • 批准号:
    1915835
  • 财政年份:
    2019
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1638352
  • 财政年份:
    2017
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Research in Mathematics
数学研究
  • 批准号:
    1128155
  • 财政年份:
    2012
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Symplectic Geometry and Dynamics
辛几何与动力学
  • 批准号:
    1104470
  • 财政年份:
    2011
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
  • 批准号:
    0505968
  • 财政年份:
    2005
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0102298
  • 财政年份:
    2001
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
VIGRE: Undergraduate, Graduate, and Postdoctoral Education in Mathematics at the Courant Institute
VIGRE:库朗研究所数学本科、研究生和博士后教育
  • 批准号:
    9983190
  • 财政年份:
    2000
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    9802154
  • 财政年份:
    1998
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence and Multiplicity Questions for Periodic Solutions of Hamiltonian Systems and Related Topics
数学科学:哈密顿系统周期解的存在性和多重性问题及相关主题
  • 批准号:
    8803496
  • 财政年份:
    1988
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant

相似海外基金

Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
  • 批准号:
    2747173
  • 财政年份:
    2022
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Studentship
Construtions of log symplectic structures which characterize quadric hypersurfaces and projective spaces.
表征二次超曲面和射影空间的对数辛结构的构造。
  • 批准号:
    21K20339
  • 财政年份:
    2021
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
  • 批准号:
    2105578
  • 财政年份:
    2021
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Standard Grant
Conformal Symplectic Structures, Contact Structures, Foliations, and Their Interactions
共形辛结构、接触结构、叶状结构及其相互作用
  • 批准号:
    2104473
  • 财政年份:
    2021
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Continuing Grant
Nahm equations and hyperkähler structures on symplectic groupoids
辛群曲面上的纳姆方程和超克勒结构
  • 批准号:
    532253-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Postdoctoral Fellowships
Nahm equations and hyperkähler structures on symplectic groupoids
辛群曲面上的纳姆方程和超克勒结构
  • 批准号:
    532253-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Postdoctoral Fellowships
Foliations, contact structures, and symplectic structures on 3,4, and 5 dimensional manifolds
3、4 和 5 维流形上的叶状结构、接触结构和辛结构
  • 批准号:
    17H02845
  • 财政年份:
    2017
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structures of symplectic derivation Lie algebras and characteristic classes of moduli spaces
辛导数的结构李代数和模空间的特征类
  • 批准号:
    15H03618
  • 财政年份:
    2015
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Kuranishi structures on moduli spaces of stable maps in non-compact symplectic manifolds
非紧辛流形稳定映射模空间上的 Kuranishi 结构
  • 批准号:
    15K04850
  • 财政年份:
    2015
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Floer theory and study on symplectic structures
Florer理论的发展和辛结构的研究
  • 批准号:
    26247006
  • 财政年份:
    2014
  • 资助金额:
    $ 112.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了