Research in Mathematics

数学研究

基本信息

  • 批准号:
    1638352
  • 负责人:
  • 金额:
    $ 799.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The School of Mathematics (SoM) at the Institute for Advanced Study (IAS) has two primary goals. First, it supports fundamental research in mathematics, encourages original thinking, and produces significant advances in knowledge. Second, it invests in the development of a diverse pool of mathematical talent. The School strongly encourages the participation of women and members of other groups underrepresented in mathematics, and is dedicated to furthering the education and careers of all of its postdoctoral fellows. Junior mathematicians benefit from both their interactions with senior scholars and the mentoring they receive from faculty members. Mid-career and senior mathematicians consolidate their research projects and explore new research directions. The School's emphasis on a unified, interdisciplinary mathematical perspective and its work in bringing together a diverse group of mathematicians has led to numerous unanticipated mathematical developments. The School is in a strong position to identify, at an early stage, subject areas with the potential for important new developments. The School is led by eight permanent faculty members whose expertise span a wide spectrum of mathematics. As a center for new collaborations and new lines of research, the School hosts approximately 75 visiting mathematicians annually whose collaborative research visits typically last 4-10 months. This grant supports 23 of these scholars (17 postdoctoral fellows and 6 mid-career mathematicians), who join approximately 50 other mathematicians supported by funds from other sources. It also provides funds to host small groups of collaborators during the summer.The School of Mathematics provides this diverse community of scholars with an interactive environment, rich in mathematical content and conducive to collaboration. Each year SoM conducts a special program focused on a particularly exciting field of mathematics. The programs for the next three years will be "Locally Symmetric Spaces: Analytical and Topological Aspects" in 2017-2018; "Variational Methods in Geometry" in 2018-2019; and "Optimization, Statistics, and Theoretical Machine Learning" in 2019-2020. Each semester SoM facilitates a week-long workshop associated with the special topical program, as well as a separate week-long working group. The "Emerging Topics Working Group" is a group of researchers selected to work on a topic which seems ripe for significant progress. Other programs include "Mathematical Conversations," an informal discussion group that meets once a week, and "Summer Collaborators," small groups of invited researchers who collaborate on special research projects during the summer months. In addition to these workshops and programs, the SoM offers regular seminars, lecture series, and reading groups. All IAS lectures are videotaped and are available to the public. Visiting mathematicians supported by the grant receive individual and group mentoring from the permanent faculty members. Their individual research projects dive into one or more of the following fields of study: Analysis, Partial Differential Equations of Applied Mathematics, Probability, Algebra, Algebraic Geometry, Lie Groups, Representation Theory, Differential Geometry, Topology, Mathematical Physics, Dynamical Systems, Computer Science, Discrete Mathematics, Theoretical Machine Learning, and Number Theory.
高等研究院(IAS)数学学院(SOM)有两个主要目标。首先,它支持数学基础研究,鼓励原创思维,并在知识方面产生重大进步。其次,它投资于培养多样化的数学人才。该学院大力鼓励妇女和在数学领域任职人数不足的其他群体成员参加,并致力于促进其所有博士后研究员的教育和职业生涯。初级数学家既受益于他们与资深学者的互动,也受益于他们从教员那里得到的指导。中级和高级数学家巩固他们的研究项目,探索新的研究方向。该学院强调统一的、跨学科的数学观点,并致力于将不同的数学家群体聚集在一起,这导致了许多意想不到的数学发展。该学院处于有利地位,能够在早期阶段确定具有重要新发展潜力的学科领域。该学院由8名常任教员领导,他们的专业知识涵盖了广泛的数学领域。作为新合作和新研究领域的中心,该学院每年接待约75名访问数学家,他们的合作研究访问通常持续4-10个月。这笔赠款资助了这些学者中的23人(17名博士后研究员和6名职业生涯中期的数学家),他们加入了由其他来源资助的大约50名其他数学家的行列。数学学院为这个多元化的学者社区提供了一个互动的环境,丰富的数学内容和有利于合作的环境。每年,索姆管理学院都会举办一个特别的项目,重点关注一个特别令人兴奋的数学领域。未来三年的课程将是2017-2018年的“局部对称空间:分析和拓扑方面”;2018-2019年的“几何变分方法”;2019-2020年的“优化、统计和理论机器学习”。每个学期的SOM都会安排一个与专题课程相关的为期一周的工作坊,以及一个单独的为期一周的工作组。“新兴主题工作组”是一组研究人员,他们被挑选出来研究一个似乎已经成熟、可以取得重大进展的主题。其他项目包括“数学对话”,这是一个非正式的讨论小组,每周举行一次会议;以及“夏季合作者”,这是一个由受邀的研究人员组成的小组,他们在夏季的几个月里就特殊的研究项目进行合作。除了这些研讨会和项目外,SOM还定期举办研讨会、系列讲座和阅读小组。所有IAS讲座都被录制下来,并向公众开放。由助学金资助的访问数学家接受来自永久教员的个人和小组指导。他们的个人研究项目深入到以下一个或多个研究领域:分析、应用数学偏微分方程、概率、代数、代数几何、李群、表示论、微分几何、拓扑学、数学物理、动力系统、计算机科学、离散数学、理论机器学习和数论。

项目成果

期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative non-vanishing of Dirichlet L-values modulo p
狄利克雷 L 值模 p 的定量不消失
  • DOI:
    10.1007/s00208-020-02017-1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Burungale, Ashay;Sun, Hae-Sang
  • 通讯作者:
    Sun, Hae-Sang
Cantor spectrum of graphene in magnetic fields
  • DOI:
    10.1007/s00222-019-00916-y
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Simon Becker;R. Han;S. Jitomirskaya
  • 通讯作者:
    Simon Becker;R. Han;S. Jitomirskaya
A higher-dimensional Bourgain–Dyatlov fractaluncertainty principle
高维 Bourgain–Dyatlov 分形不确定性原理
  • DOI:
    10.2140/apde.2020.13.813
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Han, Rui;Schlag, Wilhelm
  • 通讯作者:
    Schlag, Wilhelm
Barriers for Fast Matrix Multiplication from Irreversibility
不可逆性是快速矩阵乘法的障碍
More Barriers for Rank Methods, via a "numeric to Symbolic" Transfer
通过“数字到符号”的转移,排名方法面临更多障碍
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helmut Hofer其他文献

Employment and growth in an aging society: a simulation study for Austria
  • DOI:
    10.1007/s10663-006-9003-2
  • 发表时间:
    2006-07-26
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Josef Baumgartner;Helmut Hofer;Serguei Kaniovski;Ulrich Schuh;Thomas Url
  • 通讯作者:
    Thomas Url
Syplectic topology and Hamiltonian dynamics II
  • DOI:
    10.1007/bf02570756
  • 发表时间:
    1990-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ivar Ekeland;Helmut Hofer
  • 通讯作者:
    Helmut Hofer
Wage differences between Austrian men and women: semper idem?
  • DOI:
    10.1007/s10663-007-9038-z
  • 发表时间:
    2007-04-24
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    René Böheim;Helmut Hofer;Christine Zulehner
  • 通讯作者:
    Christine Zulehner
Electron microscopic study of the origin and formation of Reissner's fiber in the subcommissural organ of Cebus apella (Primates, Platyrrhini)
  • DOI:
    10.1007/bf00234687
  • 发表时间:
    1980-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Helmut Hofer;Werner Meinel;Harry Erhardt
  • 通讯作者:
    Harry Erhardt
Orientations
方向
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helmut Hofer;K. Wysocki;E. Zehnder
  • 通讯作者:
    E. Zehnder

Helmut Hofer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helmut Hofer', 18)}}的其他基金

IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
  • 批准号:
    1915835
  • 财政年份:
    2019
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Research in Mathematics
数学研究
  • 批准号:
    1128155
  • 财政年份:
    2012
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
Symplectic Geometry and Dynamics
辛几何与动力学
  • 批准号:
    1104470
  • 财政年份:
    2011
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0603957
  • 财政年份:
    2006
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
  • 批准号:
    0505968
  • 财政年份:
    2005
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0102298
  • 财政年份:
    2001
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
VIGRE: Undergraduate, Graduate, and Postdoctoral Education in Mathematics at the Courant Institute
VIGRE:库朗研究所数学本科、研究生和博士后教育
  • 批准号:
    9983190
  • 财政年份:
    2000
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    9802154
  • 财政年份:
    1998
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Existence and Multiplicity Questions for Periodic Solutions of Hamiltonian Systems and Related Topics
数学科学:哈密顿系统周期解的存在性和多重性问题及相关主题
  • 批准号:
    8803496
  • 财政年份:
    1988
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
  • 批准号:
    11726404
  • 批准年份:
    2017
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Continuing Grant
REU Site: Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)
REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)
  • 批准号:
    2349058
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Conference: Southwestern Undergraduate Mathematics Research Conference (SUnMaRC)
会议:西南本科生数学研究会议(SUnMaRC)
  • 批准号:
    2402549
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
  • 批准号:
    EP/Y037308/1
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Research Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
  • 批准号:
    EP/Y037286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Research Grant
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
  • 批准号:
    2235338
  • 财政年份:
    2023
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
  • 批准号:
    2235393
  • 财政年份:
    2023
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
Enhancing Career Outcomes Through Mentoring, Research, and Focused Career Discernment in Science, Technology, Engineering, and Mathematics
通过科学、技术、工程和数学领域的指导、研究和集中职业辨别来提高职业成果
  • 批准号:
    2220973
  • 财政年份:
    2023
  • 资助金额:
    $ 799.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了