Symplectic Geometry and Dynamics
辛几何与动力学
基本信息
- 批准号:1104470
- 负责人:
- 金额:$ 21.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1104470Principal Investigator: Helmut HoferThe first subproject will be concerned with the completion ofsymplectic field theory (SFT). This is currently the mostgeneral and most comprehensive theory of symplecticinvariants. There are three ingredients to this project, namelythe polyfold Fredholm theory, the scale-smooth analysis and theformulation of SFT as an algebraic presentation of the solutioncount of a polyfold Fredholm problem with operations. The secondsubproject, a by-product of the polyfold Fredholm theory,attempts to construct a homology theory based on equivalenceclasses of Fredholm problems. The resulting advantage would bethat transversality issues in studying nonlinear partialdifferential equations would actually not occur explicitly. Theywould be hidden in the (one-time) proof that the new homologytheory of a space would be naturally isomorphic to the rationalsingular homology. A third subproject is concerned with finiteenergy foliations, either in the context of area-preservingdisk-maps or the restricted planar three-body problem. Finiteenergy foliations were introduced by the PI and his collaboratorsand are an important tool in the study of the dynamics oflow-dimensional Hamiltonian systems. The restricted circularplanar three-body problem is not only interesting from a purelyacademic viewpoint, but is also used in the orbit design forscientific space missions. In certain regimes of the Jacobienergy, finite energy foliations allow to reduce the dynamics ofthe restricted three-body problem to that of the dynamics of anarea-preserving disk-map. Then again the same theory facilitatesthe understanding of the long-term behavior of iteratedarea-preserving disk maps. The project will study therelationship between the theory of finite energy foliations, asymplectic construction, and core dynamical systems notions likeentropy.It is a surprising fact that many physical systems evolving intime, allow a description as a Hamiltonian system. Systems ofthis kind describe the flow of an incompressible ideal fluid, themovement of a satellite under the gravitational forces ofcelestial bodies, or the movement of charged particles in amagnetic field. Hamiltonian systems are a very particular classof dynamical systems, which can be studied not only by themethods from dynamical systems theory, but also by a more exotickind of geometry called symplectic geometry. This is a geometrybased on the notion of area, in contrast to usual geometries,which have length and distance as their fundamentalnotions. Recent advances in this field already found somepractical uses. For example, this novel point of view has beenused in accelerator physics in algorithms controlling andinsuring stability of a beam of particles and called symplectictracking. It is the explicit purpose of this research tointegrate the approaches to Hamiltonian systems coming from thesetwo different perspectives. This should result in new methods,which should make it possible to attack problems, which so farseemed unreachable. For example it seems long term be feasible touse the new methods to develop algorithms, which would findfuel-efficient orbits for scientific space missions. Currenttechnology can verify the properties of proposed orbits extremelyfast. However, currently there is no good method for finding suchorbits. It rather compares to finding a needle in a haystack,using very large amounts of computing time.
AbstractAward:DMS-1104470主要研究者:Helmut Hofer第一个子项目将涉及辛场论(SFT)的完成。 这是目前最普遍和最全面的理论symplecticinvariants。这个项目有三个组成部分,即多重Fredholm理论,尺度光滑分析和SFT的制定作为一个代数表示的一个多重Fredholm问题的操作的解决方案计数。 第二个子项目是多重Fredholm理论的副产品,试图基于Fredholm问题的等价类构建同调理论。这样做的好处是,在研究非线性偏微分方程时,横截性问题实际上不会明确出现。它们将隐藏在(一次性)证明空间的新同调理论将自然同构于有理奇异同调中。 第三个子项目涉及有限能量叶理,无论是在面积保持磁盘映射还是限制性平面三体问题的背景下。能量叶理是由PI及其合作者提出的,是研究低维Hamilton系统动力学的重要工具。限制性圆平面三体问题不仅是一个纯学术性的问题,而且在空间科学任务的轨道设计中也有重要的应用。在雅可比能量的某些区域,有限能量叶理允许将限制性三体问题的动力学简化为面积保持圆盘映射的动力学。 同样的理论也有助于理解迭代面积保持圆盘映射的长期行为。该项目将研究有限能量叶状理论、辛结构和熵等核心动力系统概念之间的关系。令人惊讶的是,许多随时间演化的物理系统都允许描述为汉密尔顿系统。这类系统描述了不可压缩的理想流体的流动,卫星在天体引力作用下的运动,或者带电粒子在磁场中的运动。Hamilton系统是一类非常特殊的动力系统,它不仅可以用动力系统理论的方法来研究,而且还可以用一种更奇特的几何形式--辛几何来研究。这是一种基于面积概念的几何,与通常的几何不同,通常的几何以长度和距离为基本概念。这一领域的最新进展已经找到了一些实际用途。 例如,这种新颖的观点已经被用于加速器物理学中的控制和确保粒子束稳定性的算法中,称为辛波跟踪。 本研究的目的是将这两种不同的研究方法结合起来。这将产生新的方法,使人们有可能解决迄今为止似乎无法解决的问题。例如,从长远来看,使用新方法开发算法似乎是可行的,这将为科学太空任务找到燃料效率高的轨道。目前的技术可以非常快地验证所提出的轨道的性质。然而,目前还没有一个好的方法来寻找suchorbits。这相当于大海捞针,需要大量的计算时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helmut Hofer其他文献
Employment and growth in an aging society: a simulation study for Austria
- DOI:
10.1007/s10663-006-9003-2 - 发表时间:
2006-07-26 - 期刊:
- 影响因子:1.800
- 作者:
Josef Baumgartner;Helmut Hofer;Serguei Kaniovski;Ulrich Schuh;Thomas Url - 通讯作者:
Thomas Url
Syplectic topology and Hamiltonian dynamics II
- DOI:
10.1007/bf02570756 - 发表时间:
1990-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Ivar Ekeland;Helmut Hofer - 通讯作者:
Helmut Hofer
Wage differences between Austrian men and women: semper idem?
- DOI:
10.1007/s10663-007-9038-z - 发表时间:
2007-04-24 - 期刊:
- 影响因子:1.800
- 作者:
René Böheim;Helmut Hofer;Christine Zulehner - 通讯作者:
Christine Zulehner
Electron microscopic study of the origin and formation of Reissner's fiber in the subcommissural organ of Cebus apella (Primates, Platyrrhini)
- DOI:
10.1007/bf00234687 - 发表时间:
1980-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Helmut Hofer;Werner Meinel;Harry Erhardt - 通讯作者:
Harry Erhardt
Helmut Hofer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helmut Hofer', 18)}}的其他基金
IAS/Park City Mathematics Institute
IAS/帕克城数学研究所
- 批准号:
1915835 - 财政年份:2019
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
- 批准号:
1047602 - 财政年份:2010
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
- 批准号:
0603957 - 财政年份:2006
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
- 批准号:
0505968 - 财政年份:2005
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
- 批准号:
0102298 - 财政年份:2001
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
VIGRE: Undergraduate, Graduate, and Postdoctoral Education in Mathematics at the Courant Institute
VIGRE:库朗研究所数学本科、研究生和博士后教育
- 批准号:
9983190 - 财政年份:2000
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
- 批准号:
9802154 - 财政年份:1998
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence and Multiplicity Questions for Periodic Solutions of Hamiltonian Systems and Related Topics
数学科学:哈密顿系统周期解的存在性和多重性问题及相关主题
- 批准号:
8803496 - 财政年份:1988
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2227372 - 财政年份:2021
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2105471 - 财政年份:2021
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
- 批准号:
1812481 - 财政年份:2018
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Symplectic Geometry-Theory and Applications to Dynamics (B08)
辛几何理论及其在动力学中的应用(B08)
- 批准号:
218623147 - 财政年份:2012
- 资助金额:
$ 21.01万 - 项目类别:
Collaborative Research Centres
The Geometry and Dynamics of Symplectic Manifolds
辛流形的几何和动力学
- 批准号:
0905191 - 财政年份:2009
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2007
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2006
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2005
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2004
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2003
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual