Structures of symplectic derivation Lie algebras and characteristic classes of moduli spaces

辛导数的结构李代数和模空间的特征类

基本信息

  • 批准号:
    15H03618
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2015
  • 资助国家:
    日本
  • 起止时间:
    2015-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the dihedral invariant Lie subalgebra of the associative symplectic derivation Lie algebra
结合辛导数李代数的二面不变量李子代数
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    逆井卓也
  • 通讯作者:
    逆井卓也
Characteristic classes of homological surface bundles and four-dimensional topology
同调面丛和四维拓扑的特征类
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Morita;T. Sakasai and M. Suzuki;Shigeyuki Morita
  • 通讯作者:
    Shigeyuki Morita
Johnson-Morita theory(3回連続講演)
约翰逊-森田理论(连续3讲)
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Sakasai;S. Morita and M. Suzuki;Takuya Sakasai
  • 通讯作者:
    Takuya Sakasai
写像類群の安定コホモロジー群について
关于映射类群的稳定上同调群
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bestvina;K. Bromberg and K. Fujiwara;森田茂之;逆井卓也
  • 通讯作者:
    逆井卓也
On homology cobordisms of surfaces of genus 1
论属 1 表面的同源配边
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bestvina;K. Bromberg and K. Fujiwara;森田茂之;逆井卓也;小島定吉;逆井卓也;Sadayoshi Kojima;小島定吉;Takuya Sakasai
  • 通讯作者:
    Takuya Sakasai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sakasai Takuya其他文献

Sakasai Takuya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

整p進ホッジ理論と関連するモジュライ空間の研究
p进Hodge理论相关模空间的研究
  • 批准号:
    24K16887
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
  • 批准号:
    24K06743
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
周期から得られるモジュライ空間の力学系に関する研究
周期模空间动力系统研究
  • 批准号:
    24K06751
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
基本群のモジュライ空間の位相構造について
基本群模空间的拓扑结构
  • 批准号:
    24K16896
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
混標数モジュライ空間上の久賀・佐武構成とその応用
混合特征模空间的Kuga-Satake构造及其应用
  • 批准号:
    22KJ1780
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
K3曲面上の層のモジュライ空間
K3 表面层的模空间
  • 批准号:
    22KJ2923
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
放物接続とそのモジュライ空間の研究
抛物线连接及其模空间的研究
  • 批准号:
    22KJ2261
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
安定層のモジュライ空間の研究
稳定层模空间的研究
  • 批准号:
    23K03053
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
代数的ファイバー空間のK安定性の研究とそのモジュライ空間への応用
代数纤维空间K稳定性研究及其在模空间中的应用
  • 批准号:
    22KJ1929
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
擬等角解析および粗幾何による正則力学系とそのモジュライ空間の研究
使用准共形分析和粗几何研究全纯动力系统及其模空间
  • 批准号:
    22K03344
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了