Game-Theoretic Variance
博弈论方差
基本信息
- 批准号:0103811
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator outlines how to continue his work started in the prior proposal to develop a new, probabilistic approach to positional games (i.e. combinatorial board games). The straightforward way to analyze a position is to examine all of its options and all the options of these options and all the options of the options of these options and so on. The obvious difficulty of this exhaustive search through the game-tree is that it takes enormous amount of time. An attempt to make up for the lack of time is to study the random walk on the game-tree, i.e. the randomized game where both players play randomly. The basic idea is that the statistical analysis of the randomized game can be efficiently converted via potential arguments into deterministic optimal strategies. It is basically a game-theoretic adaptation of the so-called Probabilistic Method in Combinatorics ("Erdos theory") applied to hopelessly complicated games where the exact methods fail to work. It is very surprising how this ``desperate'' attempt turns out to be successful for large, interesting classes of positional games. Carrying out the program sketched in his prior proposal the investigator have developed a "game theoretic second moment method" for fair games, and applied it to solve long-standing open problems in graph and hypergraph games. Another great success was his work toward "game-theoretic independence" (i.e. game theoretic Lovasz Local Lemma). In this direction the investigator achieved an important partial result, which led to the solution of the long-standing Hales-Jewett conjecture about the multi-dimensional Tic-Tac-Toe game. In this new proposal the investigator aims for a biased generalization of his game-theoretic second moment method, which would create a breakthrough in "game-theoretic random graph theory". Also the investigator wants to continue his work to prove a perfect game-theoretic analogue of the probabilistic Lovasz Local Lemma.Traditional game theory focuses on games of incomplete information. The traditional theory provided good insights to Economics, and many areas of social science (Management, Military Strategy, etc.). One can expect at least as many new applications from a successful theory of games of complete information. Positional games, i.e. 2-player "pure conflict" games of skill like Chess and Go, form the most natural and interesting subclass of games of complete information. An extremely exciting aspect of studying positional games is that they give unique insight to how human intelligence works. It concerns fundamental questions like whether human understanding is a computational or non-computational process. Or more specific problems like to understand why (say) Go playing computer programs are nowhere close to the best human players. In contrast to Go, the best Chess-playing programs have reached the level of human Grandmasters. Game-playing computer programs examine millions of positions before deciding what to do next. On the other hand, even the best Grandmasters do not search more than 50 positions per move. In human Chess and particularly in human Go pattern recognition plays a far more important role than search. How to supply this human knowledge to a computer is a puzzle that no one has solved yet. A more concrete theoretical significance of this proposal is that it brings the seemingly separated subjects of Probability Theory, Combinatorics, and Game Theory closer to each other in an unexpected way.
研究人员概述了如何继续他的工作开始在以前的建议,以开发一个新的,概率的方法来定位游戏(即组合棋盘游戏)。 分析一个头寸的最直接的方法是检查它的所有选项,以及这些选项的所有选项,以及这些选项的所有选项,等等,在博弈树中进行这种详尽的搜索的明显困难在于它需要大量的时间。 弥补时间不足的一个尝试是研究博弈树上的随机游走,即两个参与者随机博弈的随机博弈。 其基本思想是随机博弈的统计分析可以通过潜在的参数有效地转换为确定性的最优策略。 它基本上是一个博弈论的适应所谓的概率方法在组合学(“鄂尔多斯理论”)适用于绝望的复杂游戏,其中确切的方法无法工作。 这是非常令人惊讶的是,这种“挑战”的尝试是如何成功的大型,有趣的位置游戏类。 执行该计划勾勒在他以前的建议,研究人员已经制定了一个“博弈论二阶矩方法”的公平游戏,并将其应用于解决长期存在的开放问题,在图和超图游戏。 另一个巨大的成功是他的工作对“博弈论的独立性”(即博弈论洛瓦兹局部引理)。 在这个方向上,研究者取得了一个重要的部分结果,这导致了长期存在的关于多维井字游戏的Hales-Jewett猜想的解决方案。 在这个新的建议中,研究者的目标是对他的博弈论二阶矩方法进行有偏见的推广,这将在“博弈论随机图论”中取得突破。 此外,研究人员希望继续他的工作,以证明一个完美的博弈论模拟的概率Lovasz局部引理。传统的博弈论侧重于游戏的不完全信息。 传统理论为经济学和社会科学的许多领域(管理学,军事战略等)提供了很好的见解。 人们至少可以从一个成功的完全信息博弈理论中得到同样多的新应用。 位置游戏,即2人的“纯冲突”技能游戏,如国际象棋和围棋,形成了最自然和最有趣的完全信息游戏子类。研究位置博弈的一个非常令人兴奋的方面是,它们对人类智力的运作方式有着独特的见解。 它涉及一些基本问题,比如人类的理解是一个计算过程还是非计算过程。 或者更具体的问题,比如理解为什么(比如说)计算机程序下围棋的能力远远比不上最好的人类棋手。 与围棋相比,最好的国际象棋程序已经达到了人类大师的水平。 玩游戏的计算机程序在决定下一步做什么之前会检查数百万个位置。 另一方面,即使是最好的大师,每次移动也不会搜索超过50个位置。在人类的国际象棋中,特别是在人类的围棋中,模式识别扮演着比搜索更重要的角色。 如何将人类的知识提供给计算机是一个至今还没有人解决的难题。 这一提议的一个更具体的理论意义是,它以一种意想不到的方式使概率论、组合学和博弈论这些看似分离的学科相互接近。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jozsef Beck其他文献
Integral approximation sequences
- DOI:
10.1007/bf02591800 - 发表时间:
1984-09-01 - 期刊:
- 影响因子:2.500
- 作者:
Jozsef Beck;Joel Spencer - 通讯作者:
Joel Spencer
Jozsef Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jozsef Beck', 18)}}的其他基金
Tic-Tac-Toe Theory-An Escape From The Combinatorial Chaos
井字棋理论——摆脱组合混沌
- 批准号:
0701432 - 财政年份:2007
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
Positional Games and Random Structures--A mathematical paradox
位置博弈与随机结构--一个数学悖论
- 批准号:
0406597 - 财政年份:2004
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
A Probabilistic Theory of Positional Games
位置博弈的概率理论
- 批准号:
9626151 - 财政年份:1996
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probabilistic Diophantine Approximation
数学科学:概率丢番图近似
- 批准号:
9304280 - 财政年份:1993
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Super Irregularity and Ramsey Theory
数学科学:超不规则性和拉姆齐理论
- 批准号:
9106631 - 财政年份:1991
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
- 批准号:
2887741 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Studentship