Differential Equations resulting from the interaction of Gravity with other Force Fields, and Shock-Waves in General Relativity

由重力与其他力场相互作用产生的微分方程以及广义相对论中的冲击波

基本信息

项目摘要

NSF Award Abstract - DMS-0103998 Mathematical Sciences: Differential Equations resulting from the interaction of Gravity with other Force Fields, and Shock Waves in General Relativity Abstract DMS-0103998 Smoller This project is concerned with mathematical problems involving gravity, as described by Einsteins theory of general relativity, on two different scales: (A) elementary particles, whereby gravity is coupled to other fundamental forces (e.g., nuclear forces), and quantum mechanical effects are taken into account, via the Dirac Equation; and (B) astrophysics, in particular, shock-wave explosions in the universe. In Part A, we study the behavior of elementary particles (fermions) in a rotating black-hole geometry. We also study the decay and stability of solutions of the Teukolsky equation (which applies to gravitational waves, electromagnetic waves, etc.), in a rotating black-hole background geometry. In Part B, we investigate a new cosmological model, different from the Big-Bang model. The model, which agrees with astronomical observations, is based on shock waves that can occur beyond the Hubble length. We will also investigate the validity of the Hawking-Penrose singularity theorem for situations involving interacting shock waves. Finally, we will study the dynamics of a star collapsing to a black hole, modeled as an initial-value problem for the Einstein-Euler equations, with certain constraints on the initial data. This study will also help us learn more about the constraint equations that all initial data for the Einstein equations must satisfy.This project is concerned with mathematical problems involving gravity, as described by Einsteins theory of general relativity, on two different scales: (A) elementary particles, whereby gravity is coupled to other fundamental forces (e.g., nuclear forces), and quantum mechanical effects are taken into account, and (B) astrophysics; in particular, shock-wave explosions in the universe. In Part A, we study the behavior of an elementary particle (electron, proton, etc.) near a black hole. We also study the stability of electromagnetic and gravitational waves near a black hole. In Part B, we explore a new model for cosmology, different from the usual Big Bang scenario, which is based on a shock-wave explosion. We will also study the collapse of a massive star to a black hole.
NSF Award Abstract - DMS-0103998 Mathematical Sciences:Differential Equations resulting from the interaction of Gravity with other Force Fields,and Shock Waves in General Relativity摘要DMS-0103998 Smoller这个项目关注的是爱因斯坦广义相对论所描述的,在两个不同尺度上的,涉及引力的数学问题:(A)基本粒子,重力与其他基本力耦合(例如,核力)和量子力学效应通过狄拉克方程考虑在内;(B)天体物理学,特别是宇宙中的冲击波爆炸。 在第一部分,我们研究基本粒子(费米子)在旋转黑洞几何中的行为。 我们还研究了Teukolsky方程(适用于引力波,电磁波等)解的衰减和稳定性,在旋转的黑洞背景几何中。 在B部分,我们研究了一个不同于大爆炸模型的新宇宙学模型。 该模型与天文观测一致,基于可能发生在哈勃长度之外的冲击波。 我们还将研究霍金-彭罗斯奇点定理在涉及相互作用激波的情况下的有效性。 最后,我们将研究星星坍缩成黑洞的动力学,模型化为爱因斯坦-欧拉方程的初值问题,对初始数据有一定的约束。 这项研究还将帮助我们更多地了解爱因斯坦方程的所有初始数据必须满足的约束方程。这个项目涉及爱因斯坦广义相对论所描述的涉及引力的数学问题,在两个不同的尺度上:(A)基本粒子,引力与其他基本力耦合(例如,核力)和量子力学效应被考虑在内,(B)天体物理学,特别是宇宙中的冲击波爆炸。 在A部分,我们研究基本粒子(电子,质子等)的行为。靠近黑洞。 我们还研究了黑洞附近电磁波和引力波的稳定性。 在B部分,我们将探索一种新的宇宙学模型,它不同于通常的大爆炸模型,后者是基于冲击波爆炸。 我们还将研究大质量星星坍缩成黑洞的过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Smoller其他文献

Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
An existence theorem for positive solutions of semilinear elliptic equations
Cosmology with a Shock-Wave
On the Oppenheimer‐Volkoff Equations in General Relativity
Symmetry-breaking for positive solutions of semilinear elliptic equations

Joel Smoller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joel Smoller', 18)}}的其他基金

Mathematical Questions in Gravitation, Black Holes, Cosmology, and Rotating Stars
引力、黑洞、宇宙学和旋转恒星的数学问题
  • 批准号:
    1105189
  • 财政年份:
    2011
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Applications to Fluid Dynamics, General Relativity and Geometry
非线性偏微分方程及其在流体动力学、广义相对论和几何中的应用
  • 批准号:
    0963846
  • 财政年份:
    2011
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Mathematical Questions Resulting from the Coupling of Gravity to Other Fields
重力与其他场耦合产生的数学问题
  • 批准号:
    0603754
  • 财政年份:
    2006
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Relativistic Fluids and the Coupling of Gravity to Other Forces
相对论流体和重力与其他力的耦合
  • 批准号:
    9802370
  • 财政年份:
    1998
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problemss in Relativistic Fluids andEinstein-Yang/Mills Equations
数学科学:相对论流体和爱因斯坦-杨/米尔斯方程中的问题
  • 批准号:
    9501128
  • 财政年份:
    1995
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems In Differential Equations And General Relativity
数学科学:微分方程和广义相对论中的问题
  • 批准号:
    9203972
  • 财政年份:
    1992
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
  • 批准号:
    9003337
  • 财政年份:
    1991
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
  • 批准号:
    8905205
  • 财政年份:
    1989
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
  • 批准号:
    8600035
  • 财政年份:
    1986
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Partial Differential Equations
数学科学:偏微分方程问题
  • 批准号:
    8301243
  • 财政年份:
    1983
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant

相似海外基金

Intersection Theory for Differential Equations
微分方程的交集理论
  • 批准号:
    2401570
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
  • 批准号:
    10091110
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了