Mathematical Questions Resulting from the Coupling of Gravity to Other Fields
重力与其他场耦合产生的数学问题
基本信息
- 批准号:0603754
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates three questions in general relativity: (i) The stability of solutions of electromagnetic and linearized gravitational waves in a Kerr (rotating) black hole background metric; i.e., solutions of the Cauchy problem for these partial differential equations with compactly supported initial data outside of the event horizon of the black hole. These stability results will add credibility to the use of the Kerr metric in detailed astrophysical models. (ii) Rigorous justification of the Penrose process for the extraction of energy from a rotating black hole. (iii) Incorporation of Guth's theory of inflation into the principal investigator's cosmological model. brbrBlack holes have interested both physicists and mathematicians since Einstein proposed his theory of general relativity in 1915. They have been studied intensively, but many questions remain unanswered. This project explores three important questions. It investigates the stability of black holes under electromagnetic and gravitational perturbations. Such understanding is of great importance for predicting the nature of gravitational radiation originating in outer space. The stability problem will be considered in a manner parallel to the observations made by astronomers, leading to a better theoretical understanding of numerical modeling of solutions of Einstein's equations. The project also aims to put the question of extracting energy from a rotating black hole on a firm theoretical basis. The extraction of energy from a rotating black hole was proposed in 1968, but until recently the question was far too difficult to be studied. Finally, the project studies some questions in astrophysics dealing with cosmology and supernova explosions; these explosions of enormously dense massive stars undergoing gravitational collapse are responsible for seeding the universe with heavy elements, including carbon and iron.
本项目研究广义相对论中的三个问题:(i)克尔(旋转)黑洞背景度规中电磁和线性引力波解的稳定性;即,在黑洞视界外,给出了这些具有紧支撑初值的偏微分方程的Cauchy问题的解。 这些稳定性结果将增加克尔度规在详细天体物理模型中使用的可信度。 (ii)从旋转黑洞中提取能量的彭罗斯过程的严格证明。 (iii)将古斯的暴胀理论纳入首席研究员的宇宙学模型。brbr自从爱因斯坦在1915年提出广义相对论以来,黑洞就引起了物理学家和数学家的兴趣。 人们对这些问题进行了深入研究,但许多问题仍然没有答案。 这个项目探讨了三个重要问题。 它研究在电磁和引力扰动下黑洞的稳定性。 这种认识对于预测源自外层空间的引力辐射的性质具有重要意义。 稳定性问题将被认为是在平行的天文学家所作的观察,导致更好的理论理解的数值模拟的解决方案爱因斯坦方程。 该项目还旨在将从旋转黑洞中提取能量的问题置于坚实的理论基础之上。 从旋转黑洞中提取能量的想法早在1968年就提出了,但直到最近,这个问题仍然难以研究。 最后,该项目研究了天体物理学中涉及宇宙学和超新星爆炸的一些问题;这些经历引力坍缩的密度极高的大质量恒星的爆炸是宇宙中重元素的种子,包括碳和铁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Smoller其他文献
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
- DOI:
10.1007/s00205-010-0301-2 - 发表时间:
2010-03-17 - 期刊:
- 影响因子:2.400
- 作者:
Felix Finster;Joel Smoller - 通讯作者:
Joel Smoller
An existence theorem for positive solutions of semilinear elliptic equations
- DOI:
10.1007/bf00251358 - 发表时间:
1986-09-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Arthur Wasserman - 通讯作者:
Arthur Wasserman
Cosmology with a Shock-Wave
- DOI:
10.1007/s002200050780 - 发表时间:
2000-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Joel Smoller;Blake Temple - 通讯作者:
Blake Temple
On the Oppenheimer‐Volkoff Equations in General Relativity
- DOI:
10.1007/s002050050089 - 发表时间:
1998-05-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Blake Temple - 通讯作者:
Blake Temple
Symmetry-breaking for positive solutions of semilinear elliptic equations
- DOI:
10.1007/bf00251359 - 发表时间:
1986-09-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Arthur Wasserman - 通讯作者:
Arthur Wasserman
Joel Smoller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Smoller', 18)}}的其他基金
Mathematical Questions in Gravitation, Black Holes, Cosmology, and Rotating Stars
引力、黑洞、宇宙学和旋转恒星的数学问题
- 批准号:
1105189 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications to Fluid Dynamics, General Relativity and Geometry
非线性偏微分方程及其在流体动力学、广义相对论和几何中的应用
- 批准号:
0963846 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Differential Equations resulting from the interaction of Gravity with other Force Fields, and Shock-Waves in General Relativity
由重力与其他力场相互作用产生的微分方程以及广义相对论中的冲击波
- 批准号:
0103998 - 财政年份:2001
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Relativistic Fluids and the Coupling of Gravity to Other Forces
相对论流体和重力与其他力的耦合
- 批准号:
9802370 - 财政年份:1998
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Problemss in Relativistic Fluids andEinstein-Yang/Mills Equations
数学科学:相对论流体和爱因斯坦-杨/米尔斯方程中的问题
- 批准号:
9501128 - 财政年份:1995
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems In Differential Equations And General Relativity
数学科学:微分方程和广义相对论中的问题
- 批准号:
9203972 - 财政年份:1992
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
9003337 - 财政年份:1991
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
8905205 - 财政年份:1989
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
8600035 - 财政年份:1986
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Partial Differential Equations
数学科学:偏微分方程问题
- 批准号:
8301243 - 财政年份:1983
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似海外基金
Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
- 批准号:
ST/Y005848/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
- 批准号:
480806 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
- 批准号:
2883720 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
- 批准号:
2319080 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226553 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
- 批准号:
480813 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
- 批准号:
487935 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
- 批准号:
2879630 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Studentship