Mathematical Questions in Gravitation, Black Holes, Cosmology, and Rotating Stars
引力、黑洞、宇宙学和旋转恒星的数学问题
基本信息
- 批准号:1105189
- 负责人:
- 金额:$ 25.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research deals with mathematical problems involving gravity which arise in astrophysics. Specifically my research will involve (1) proving decay of solutions to the initial-value problem for Maxwell's equations of electromagnetism and for gravitational waves, both in a Kerr rotating black hole geometry; (2) studying shock waves and expansion waves arising in general relativity; (3) magnetic rotating and non-rotating Newtonian stars. Part 1 continues previous work on decay results for the Dirac and scalar wave equations, to Maxwell's equations and to the linearized Einstein equations in a KBH background geometry. Part 2 deals with shock waves and expansion waves in general relativity, and applying these wave solutions to problems in astrophysics; e.g. the so-called anomalous acceleration of the universe, without needing dark energy or the cosmological constant. It is based on my rigorously obtained new solutions of the Einstein equations. Part 3 arises from my recent results on existence and stability results for rotating Newtonian stars and is aimed at extending these results to magnetic stars (like our sun). This study is motivated by an attempt to better understand sunspots and solar flares, from a rigorous mathematical point of view.The proposal is focused on three areas of astrophysics. The first involves studying whether black holes are stable under electromagnetic and gravitational perturbation. That is, if one sends an electromagnetic or gravitational wave into a rotating black hole, will the black hole remain pretty much intact, or will it radiate away a good portion of its energy? The second is to continue my work on new solutions of Einstein's equations explaining the so-called anomalous acceleration of the universe. That is, the standard physical model modifies Einstein's equations in an ad hoc manner and involves the notion of "dark energy", an unobserved anti-gravitational force, in order to agree with astronomical observations. This approach has no physical basis whatsoever. The final area of interest to me is to study start with magnetic fields with an aim to getting a theoretical explanation of sunspots and solar flares. These phenomena remain highly mysterious, and are important since when they occur, they disrupt satellite as well as radio communication. It is not known how to predict sunspots and solar flares, and a firm mathematical understanding of the associated equations would be an important step in this direction.
我的研究涉及天体物理学中出现的涉及重力的数学问题。具体来说,我的研究将涉及(1)证明克尔旋转黑洞几何中麦克斯韦电磁方程和引力波初值问题解的衰减;(2)研究广义相对论中产生的激波和膨胀波;(3)磁旋转和非旋转牛顿恒星。第1部分继续以前的工作的狄拉克和标量波方程的衰变结果,麦克斯韦方程和线性化爱因斯坦方程在KBH背景几何。第二部分讨论广义相对论中的激波和膨胀波,并将这些波解应用于天体物理学中的问题,例如所谓的宇宙反常加速,而不需要暗能量或宇宙学常数。它是基于我严格获得的爱因斯坦方程的新解。第3部分来自我最近关于旋转牛顿恒星的存在性和稳定性的结果,旨在将这些结果推广到磁星(如我们的太阳)。这项研究的动机是试图从严格的数学角度更好地理解太阳黑子和太阳耀斑。该提议集中在天体物理学的三个领域。第一个涉及研究黑洞在电磁和引力扰动下是否稳定。也就是说,如果一个人向一个旋转的黑洞发送电磁波或引力波,黑洞会保持几乎完整,还是会辐射掉大部分能量?第二个是继续我的工作,寻找爱因斯坦方程的新解,解释所谓的宇宙反常加速。也就是说,标准物理模型以一种特别的方式修改了爱因斯坦的方程,并涉及“暗能量”的概念,一种未观察到的反引力,以便与天文观测相一致。这种方法没有任何物理基础。我感兴趣的最后一个领域是从磁场开始研究,目的是得到太阳黑子和太阳耀斑的理论解释。这些现象仍然非常神秘,而且非常重要,因为当它们发生时,它们会破坏卫星和无线电通信。目前还不知道如何预测太阳黑子和太阳耀斑,对相关方程的坚实数学理解将是朝着这个方向迈出的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Smoller其他文献
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
- DOI:
10.1007/s00205-010-0301-2 - 发表时间:
2010-03-17 - 期刊:
- 影响因子:2.400
- 作者:
Felix Finster;Joel Smoller - 通讯作者:
Joel Smoller
An existence theorem for positive solutions of semilinear elliptic equations
- DOI:
10.1007/bf00251358 - 发表时间:
1986-09-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Arthur Wasserman - 通讯作者:
Arthur Wasserman
Cosmology with a Shock-Wave
- DOI:
10.1007/s002200050780 - 发表时间:
2000-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Joel Smoller;Blake Temple - 通讯作者:
Blake Temple
On the Oppenheimer‐Volkoff Equations in General Relativity
- DOI:
10.1007/s002050050089 - 发表时间:
1998-05-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Blake Temple - 通讯作者:
Blake Temple
Symmetry-breaking for positive solutions of semilinear elliptic equations
- DOI:
10.1007/bf00251359 - 发表时间:
1986-09-01 - 期刊:
- 影响因子:2.400
- 作者:
Joel Smoller;Arthur Wasserman - 通讯作者:
Arthur Wasserman
Joel Smoller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Smoller', 18)}}的其他基金
Nonlinear Partial Differential Equations and Applications to Fluid Dynamics, General Relativity and Geometry
非线性偏微分方程及其在流体动力学、广义相对论和几何中的应用
- 批准号:
0963846 - 财政年份:2011
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Mathematical Questions Resulting from the Coupling of Gravity to Other Fields
重力与其他场耦合产生的数学问题
- 批准号:
0603754 - 财政年份:2006
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Differential Equations resulting from the interaction of Gravity with other Force Fields, and Shock-Waves in General Relativity
由重力与其他力场相互作用产生的微分方程以及广义相对论中的冲击波
- 批准号:
0103998 - 财政年份:2001
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
Relativistic Fluids and the Coupling of Gravity to Other Forces
相对论流体和重力与其他力的耦合
- 批准号:
9802370 - 财政年份:1998
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Problemss in Relativistic Fluids andEinstein-Yang/Mills Equations
数学科学:相对论流体和爱因斯坦-杨/米尔斯方程中的问题
- 批准号:
9501128 - 财政年份:1995
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems In Differential Equations And General Relativity
数学科学:微分方程和广义相对论中的问题
- 批准号:
9203972 - 财政年份:1992
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
9003337 - 财政年份:1991
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
8905205 - 财政年份:1989
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程问题
- 批准号:
8600035 - 财政年份:1986
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Partial Differential Equations
数学科学:偏微分方程问题
- 批准号:
8301243 - 财政年份:1983
- 资助金额:
$ 25.2万 - 项目类别:
Continuing Grant
相似海外基金
Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
- 批准号:
ST/Y005848/1 - 财政年份:2024
- 资助金额:
$ 25.2万 - 项目类别:
Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
- 批准号:
480806 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
- 批准号:
2883720 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
- 批准号:
2319080 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226553 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
- 批准号:
480813 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
- 批准号:
487935 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
- 批准号:
2879630 - 财政年份:2023
- 资助金额:
$ 25.2万 - 项目类别:
Studentship