Geometric Variational Problems

几何变分问题

基本信息

  • 批准号:
    0104007
  • 负责人:
  • 金额:
    $ 6.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Abstract- DMS-0104007-Geometric Variational ProblemsThe principal investigator proposes to continue the study, joint with R. Schoen, of constrained variationalproblems for lagrangian cycles. In its most basic form the problem can be posed as follows: Consider a symplecticmanifold with a metric compatible with the symplectic form. Fix a homology class that can be represented by a lagrangian cycle. Find a lagrangian cycle that minimizes volume among all lagrangian cycles representing this class and derive optimal regularity of this cycle. In the case that the symplectic manifold is Kaehler,with Kaehler-Einstein metric, sufficient regularity of the minimizer implies that the minimizer is both lagrangian and minimal (zero mean curvature). If the first Chern class is negative such submanifolds could be unique, in a suitable sense,and then useful in understanding the geometry of the ambient manifold. If the Kaehler manifold is a Calabi-Yau manifold sufficient regularity implies that the minimizer is a calibrated submanifold, a special lagrangian submanifold.We propose to investigate the existence and regularity of this and related varitional problems and to study the consequences of these results on thegeometry of Kaehler-Einstein manifolds.A consequence of the proposal is an existence theorem for special lagrangian submanifolds of a Calabi-Yau manifold.This result is an essential part of the program proposed by Strominger-Yau-Zaslow for the geometric construction of "mirrorsymmetry". Mirror symmetry is one of the most interesting and important problems currently being studied in mathematics and theoretical physics. At its core it proposes a duality between a class of manifolds called Calabi-Yau manifolds. This duality allows computations to be performed on one manifold that yield a result for its "mirror". Thus computations that are otherwise extremely difficult can be achieved.The realization of mirror symmetry will effect such diverse subjects as algebraic geometry, differential geometry, topology, partial differential equations and string theory.The current interest in this subject helps bridge the gap between physics and mathematics. In two-dimensions our proposal has some close analogies to a well-known model problemin non-linear elasticity. The regularity theory developed here will shed light on the difficult regularity problems of that theory. Finally this problem is the first attempt to make a systematic study of a variational problem with a geometric constaint. This idea will have other important applications in geometry and its applications.
摘要- DMS-0104007-几何变分问题首席研究员建议与 R. Schoen 一起继续研究拉格朗日循环的约束变分问题。就其最基本的形式而言,该问题可以提出如下:考虑具有与辛形式兼容的度量的辛流形。修复可以用拉格朗日循环表示的同源类。找到一个拉格朗日循环,使代表此类的所有拉格朗日循环中的体积最小化,并导出该循环的最佳正则性。在辛流形为凯勒的情况下,采用凯勒-爱因斯坦度量,极小值的充分正则性意味着极小值既是拉格朗日又是极小值(零平均曲率)。如果第一个 Chern 类为负,则此类子流形在适当的意义上可能是唯一的,然后有助于理解环境流形的几何形状。如果凯勒流形是卡拉比-丘流形,则充分规律性意味着极小值是一个校准子流形,即特殊拉格朗日子流形。我们建议研究该问题及相关变分问题的存在性和规律性,并研究这些结果对凯勒-爱因斯坦流形几何的影响。该提议的一个结果是特殊拉格朗日的存在定理 Calabi-Yau 流形的子流形。这个结果是 Strominger-Yau-Zaslow 提出的“镜像对称”几何构造程序的重要组成部分。镜像对称是目前数学和理论物理研究中最有趣和最重要的问题之一。它的核心提出了称为 Calabi-Yau 流形的一类流形之间的对偶性。这种对偶性允许在一个流形上执行计算,产生其“镜像”的结果。从而可以实现原本极其困难的计算。镜像对称的实现将影响代数几何、微分几何、拓扑、偏微分方程和弦理论等不同学科。当前对这一学科的兴趣有助于弥合物理和数学之间的差距。在二维中,我们的建议与众所周知的非线性弹性模型问题有一些密切的相似之处。这里发展的正则性理论将阐明该理论中困难的正则性问题。最后,该问题是对具有几何约束的变分问题进行系统研究的首次尝试。这个想法将在几何及其应用中具有其他重要的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Wolfson其他文献

Jon Wolfson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Wolfson', 18)}}的其他基金

Topics in Differential Geometry
微分几何专题
  • 批准号:
    0604759
  • 财政年份:
    2006
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Topics in Lagrangian Geometry
拉格朗日几何专题
  • 批准号:
    0304587
  • 财政年份:
    2003
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Variational Problems in Symplectic and Kahler Geometry
辛几何和卡勒几何中的变分问题
  • 批准号:
    9802487
  • 财政年份:
    1998
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic and Complex Geometry
数学科学:辛几何和复几何
  • 批准号:
    9504898
  • 财政年份:
    1995
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symplectic Manifolds, Minimal Surfaces and Mapping Class Groups
数学科学:辛流形、最小曲面和映射类群
  • 批准号:
    9305067
  • 财政年份:
    1993
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Minimal Surfaces, Complex and Symplectic Geometry
数学科学:最小曲面、复几何和辛几何
  • 批准号:
    8901230
  • 财政年份:
    1989
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Differential Geometry
数学科学:微分几何
  • 批准号:
    8701404
  • 财政年份:
    1987
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant

相似海外基金

Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
  • 批准号:
    2143124
  • 财政年份:
    2022
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2021
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
  • 批准号:
    2044954
  • 财政年份:
    2021
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
  • 批准号:
    2055686
  • 财政年份:
    2021
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    $ 6.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了