Complex Analysis and Geometry
复杂分析和几何
基本信息
- 批准号:0104047
- 负责人:
- 金额:$ 7.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract NSF Proposal DMS-0104047Speaking more technically, the proposal aims to treat four researchlines in complex geometry and analysis. We are studying the Grauerttube construction for its rigidity and uniquesness properties forlarge (maximal) radius or domain, and examining whether this point ofview adds to old questions in representation theory and automorphic forms.Second, we will study a Kaehler-Einstein version of Min-Oo's rigiditytheorem which we conjecture to hold. We will continue work withX. Gong on Levi flat hypersurfaces with singularities, especiallyalgebraic ones with isolated singularities. Their importance issuggested by recent work of Siu and others proving the conjecture ofCamacho on the non-existence of smooth, Levi-flat hypersurfaces inthe complex projective plane. Finally we propose to study the rigidityof special classes of Schubert cycles on flag manifolds, followingupon the work of the PI's former student M. Walters and,independently, R. Bryant.The proposal addresses several questions in complex analysis andgeometry. Most people are familiar with Descartes' analytic geometryfrom high school: in most respects, this line of investigation is themodern descendent of those early ideas. We will study the relationshipbetween a geometric locus, sometimes defined by equations as inDescartes' original case, and its analytic properties, thoseproperties influenced by the calculus of Newton and Leibniz. Inparticular we study a complexification of geometric locus, that is, weadd "imaginary points" to the geometry, related to the imaginary unit"i", and study the influence of the imaginary points on the realpoints and their geometry. Another portion of the project seeks tounderstand the asymptotic, or long range properties of special metricgeometries related to the Einstein equations. It is well known thatboth of these properties can be influential in physical applications,and there is recent work to lead one to hope that both thiscomplexification construction and the asymptotics of Einstein metricscan be used to understand parts of the so-called Maldacenacorrespondence in theoretical physics.
摘要NSF提案DMS-0104047从技术上讲,该提案旨在处理复杂几何和分析中的四条研究线。我们正在研究的Grauerttube结构的刚性和uniquesness性质为大(最大)半径或域,并检查是否这一观点增加了老问题的表示论和自守形式。第二,我们将研究Kaehler-Einstein版本的Min-Oo的刚性定理,我们猜想举行。我们将继续与X合作。Gong关于具有奇点的Levi平坦超曲面,特别是具有孤立奇点的代数超曲面的研究.他们的重要性issuggested最近的工作萧和其他人证明猜想ofCamacho的不存在光滑,列维平坦超曲面在复杂的射影平面。最后,我们建议研究旗流形上特殊类Schubert圈的刚性,这是继PI以前的学生M. Walters和R.这个建议解决了复分析和几何学中的几个问题。大多数人从高中就熟悉笛卡尔的解析几何:在大多数方面,这条研究路线是那些早期思想的现代后代。我们将研究一个几何轨迹,有时定义的方程在笛卡尔的原始情况下,和它的分析性质之间的关系,这些性质的影响,由牛顿和莱布尼茨演算。特别研究了几何轨迹的一种复杂化,即在几何中加入与虚单位i有关的虚点,并研究了虚点对实点及其几何的影响。该项目的另一部分旨在理解与爱因斯坦方程相关的特殊度量几何的渐近或长程性质。众所周知,这两个性质在物理应用中都是有影响力的,最近的工作使人们希望,这种复杂化结构和爱因斯坦度量的渐近性都可以用来理解理论物理中所谓的马尔达塞对应的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Burns其他文献
Matter Quantum Corrections to the Graviton Self-Energy and the Newtonian Potential
对引力子自能和牛顿势的物质量子修正
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Daniel Burns;A. Pilaftsis - 通讯作者:
A. Pilaftsis
Temperature-sensitive contacts in disordered loops tune enzyme I activity
无序环中的温度敏感接触可调节酶 I 活性
- DOI:
10.1101/2022.06.18.496683 - 发表时间:
2022 - 期刊:
- 影响因子:11.1
- 作者:
Daniel Burns;Aayushi Singh;Vincenzo Venditti;D. Potoyan - 通讯作者:
D. Potoyan
Branched stented anastomosis frozen elephant trunk repair: Early results from a physician-sponsored investigational device exemption study
- DOI:
10.1016/j.jtcvs.2023.09.069 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Eric E. Roselli;Patrick R. Vargo;Faisal Bakaeen;Marijan Koprivanac;Daniel Burns;Yuki Kuramochi;Marc Gillinov;Edward Soltesz;Michael Tong;Shinya Unai;Haytham Elgharably;Xiaoying Lou;Francis Caputo;Levester Kirksey;Jonathong Quatromoni;Ali Khalifeh;Viral Patel;Frank Cikach;James Witten;Andrew Tang - 通讯作者:
Andrew Tang
COMPARISONS IN GLOBAL AND SEGMENTAL LEFT VENTRICULAR LONGITUDINAL STRAINS IN DEGENERATIVE MITRAL REGURGITATION PATIENTS UNDERGOING SURGICAL INTERVENTION OR PERCUTANEOUS VALVE REPAIR
- DOI:
10.1016/s0735-1097(21)02747-9 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Maria Vega Brizneda;Sudarshana Datta;Tom Kai Ming Wang;Patrick Collier;Daniel Burns;Amar Krishnaswamy;Marc Gillinov;Brian Griffin;Christine Jellis - 通讯作者:
Christine Jellis
TCT CONNECT-117 Impact of Pre-Existing Pacemaker on Survival and Echocardiographic Outcomes After Transcatheter Aortic Valve Replacement With SAPIEN-3 Valve
- DOI:
10.1016/j.jacc.2020.09.131 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:
- 作者:
Yasser Sammour;Rama Dilip Gajulapalli;Hassan Lak;Sanchit Chawla;Cameron Incognito;Arnav Kumar;Kimi Sato;Jay Patel;James Yun;Zoran Popovic;Daniel Burns;Lars Svensson;Khaldoun Tarakji;Oussama Wazni;Grant Reed;Rishi Puri;Amar Krishnaswamy;Samir Kapadia - 通讯作者:
Samir Kapadia
Daniel Burns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Burns', 18)}}的其他基金
Mathematical Sciences: Complex Geometry and Analysis
数学科学:复杂几何与分析
- 批准号:
9408994 - 财政年份:1994
- 资助金额:
$ 7.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference on Several ComplexVariables
数学科学:中西部多个复变量会议
- 批准号:
9216603 - 财政年份:1992
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Characterization of the Degree of Fracturing and the Nature of Fracture Alteration from MCS Logging Data at Site 395A, 418A and 504B
根据 395A、418A 和 504B 地点的 MCS 测井数据表征断裂程度和断裂蚀变性质
- 批准号:
8900316 - 财政年份:1989
- 资助金额:
$ 7.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference Of Several ComplexVariables
数学科学:中西部复变量会议
- 批准号:
8611917 - 财政年份:1986
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Geometry Aware Exploratory Data Analysis and Inference Methods for Complex Data
复杂数据的几何感知探索性数据分析和推理方法
- 批准号:
2311034 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Continuing Grant
Complex Analysis in Algebraic Geometry for Symbolic Computation
符号计算的代数几何中的复分析
- 批准号:
574677-2022 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
University Undergraduate Student Research Awards
Study of Analysis and Geometry of complex spaces
复杂空间分析与几何研究
- 批准号:
21H00989 - 财政年份:2021
- 资助金额:
$ 7.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-Archimedean Methods in Complex Analysis, Dynamics, and Geometry
复杂分析、动力学和几何中的非阿基米德方法
- 批准号:
1900025 - 财政年份:2019
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Modeling and analysis of material transport in complex geometry of neurons
神经元复杂几何形状中物质传输的建模和分析
- 批准号:
1804929 - 财政年份:2018
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Conference on Complex Analysis and Geometry
复杂分析与几何会议
- 批准号:
1500302 - 财政年份:2015
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant