Complex Analysis and Geometry
复杂分析和几何
基本信息
- 批准号:1105586
- 负责人:
- 金额:$ 30.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1105586Principal Investigator: Daniel M. BurnsSome of the themes emphasized in these research projects aremodern aspects of the Bohr-Sommerfeld theory from the early daysof quantum mechanics in the 1920s, value distribution theory andAhlfors currents, and Grauert tubes. In physics theBohr-Sommerfeld theory was created as a method for quantizing anintegrable classical mechanical system. The principalinvestigator interprets the Bohr-Sommerfeld conditions forquantization as a geometric property, name a triviality conditionon the holonomy of a certain flat bundle. Ongoing work seeks tounderstand the connections between singularities of Hamiltoniansand singularities of underlying complex spaces, and the geometryof the Bohr-Sommerfeld construction seems to be a central focusof the story.Value distribution theory is a framework for attempting to countsolutions to an equation in complex variables. The FundamentalTheorem of Algebra tells us that a polynomial equation of degreen in one variable has exactly n solutions over the complexnumbers, if you count repeated roots with care. More complicatedequations in a single complex variable can have infinitely manysolutions, but these are spread around the complex plane and thenumber of solutions contained in a ball of radius R about theorigin can only grow at a limited rate as R becomes large -- asituation greatly clarified by ideas introduced by the Finnishmathematician Rolf Nevanlinna in the 1920s, at about the sametime that the Bohr-Sommerfeld theory was developed in physics.One of the projects supported by this award is a project thatapplies modern geometric tools to study the distribution ofsolutions to equations in several variables.
摘要奖:DMS-1105586主要研究者:丹尼尔M.伯恩斯在这些研究项目中强调的一些主题是20世纪20年代量子力学早期的玻尔-索末菲理论的现代方面,价值分布理论和阿尔福斯电流,以及格劳尔特管。在物理学中,玻尔-索末菲理论是作为一种量子化可积经典力学系统的方法而创立的。主要研究者将量子化的Bohr-Sommerfeld条件解释为一种几何性质,称之为关于某个平坦丛的完整性的平凡性条件。正在进行的工作旨在了解奇异性的哈密顿和奇异性的基础复杂的空间之间的联系,和几何的玻尔-索末菲建设似乎是一个中心focusoftheory.Value分布理论是一个框架,试图countsolutions的一个方程的复变。代数基本定理告诉我们,如果你仔细计算重复的根,一个变量的退化多项式方程在复数上正好有n个解。更复杂的方程在一个单一的复变量可以有无限多的解决方案,但这些都是分散在复平面和解决方案的数量包含在一个球的半径R的原点只能增长在一个有限的速度作为R变大-一个情况下大大澄清了思想介绍的芬兰数学家罗尔夫Nevanlinna在20世纪20年代,大约在同一时间,玻尔-索末菲理论在物理学中得到了发展。该奖项支持的项目之一是一个应用现代几何工具研究多变量方程解的分布的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Burns其他文献
Matter Quantum Corrections to the Graviton Self-Energy and the Newtonian Potential
对引力子自能和牛顿势的物质量子修正
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Daniel Burns;A. Pilaftsis - 通讯作者:
A. Pilaftsis
Temperature-sensitive contacts in disordered loops tune enzyme I activity
无序环中的温度敏感接触可调节酶 I 活性
- DOI:
10.1101/2022.06.18.496683 - 发表时间:
2022 - 期刊:
- 影响因子:11.1
- 作者:
Daniel Burns;Aayushi Singh;Vincenzo Venditti;D. Potoyan - 通讯作者:
D. Potoyan
Branched stented anastomosis frozen elephant trunk repair: Early results from a physician-sponsored investigational device exemption study
- DOI:
10.1016/j.jtcvs.2023.09.069 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Eric E. Roselli;Patrick R. Vargo;Faisal Bakaeen;Marijan Koprivanac;Daniel Burns;Yuki Kuramochi;Marc Gillinov;Edward Soltesz;Michael Tong;Shinya Unai;Haytham Elgharably;Xiaoying Lou;Francis Caputo;Levester Kirksey;Jonathong Quatromoni;Ali Khalifeh;Viral Patel;Frank Cikach;James Witten;Andrew Tang - 通讯作者:
Andrew Tang
COMPARISONS IN GLOBAL AND SEGMENTAL LEFT VENTRICULAR LONGITUDINAL STRAINS IN DEGENERATIVE MITRAL REGURGITATION PATIENTS UNDERGOING SURGICAL INTERVENTION OR PERCUTANEOUS VALVE REPAIR
- DOI:
10.1016/s0735-1097(21)02747-9 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Maria Vega Brizneda;Sudarshana Datta;Tom Kai Ming Wang;Patrick Collier;Daniel Burns;Amar Krishnaswamy;Marc Gillinov;Brian Griffin;Christine Jellis - 通讯作者:
Christine Jellis
TCT CONNECT-117 Impact of Pre-Existing Pacemaker on Survival and Echocardiographic Outcomes After Transcatheter Aortic Valve Replacement With SAPIEN-3 Valve
- DOI:
10.1016/j.jacc.2020.09.131 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:
- 作者:
Yasser Sammour;Rama Dilip Gajulapalli;Hassan Lak;Sanchit Chawla;Cameron Incognito;Arnav Kumar;Kimi Sato;Jay Patel;James Yun;Zoran Popovic;Daniel Burns;Lars Svensson;Khaldoun Tarakji;Oussama Wazni;Grant Reed;Rishi Puri;Amar Krishnaswamy;Samir Kapadia - 通讯作者:
Samir Kapadia
Daniel Burns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Burns', 18)}}的其他基金
Mathematical Sciences: Complex Geometry and Analysis
数学科学:复杂几何与分析
- 批准号:
9408994 - 财政年份:1994
- 资助金额:
$ 30.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference on Several ComplexVariables
数学科学:中西部多个复变量会议
- 批准号:
9216603 - 财政年份:1992
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
Characterization of the Degree of Fracturing and the Nature of Fracture Alteration from MCS Logging Data at Site 395A, 418A and 504B
根据 395A、418A 和 504B 地点的 MCS 测井数据表征断裂程度和断裂蚀变性质
- 批准号:
8900316 - 财政年份:1989
- 资助金额:
$ 30.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference Of Several ComplexVariables
数学科学:中西部复变量会议
- 批准号:
8611917 - 财政年份:1986
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
Geometry Aware Exploratory Data Analysis and Inference Methods for Complex Data
复杂数据的几何感知探索性数据分析和推理方法
- 批准号:
2311034 - 财政年份:2023
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
$ 30.83万 - 项目类别:
Continuing Grant
Complex Analysis in Algebraic Geometry for Symbolic Computation
符号计算的代数几何中的复分析
- 批准号:
574677-2022 - 财政年份:2022
- 资助金额:
$ 30.83万 - 项目类别:
University Undergraduate Student Research Awards
Study of Analysis and Geometry of complex spaces
复杂空间分析与几何研究
- 批准号:
21H00989 - 财政年份:2021
- 资助金额:
$ 30.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-Archimedean Methods in Complex Analysis, Dynamics, and Geometry
复杂分析、动力学和几何中的非阿基米德方法
- 批准号:
1900025 - 财政年份:2019
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
Modeling and analysis of material transport in complex geometry of neurons
神经元复杂几何形状中物质传输的建模和分析
- 批准号:
1804929 - 财政年份:2018
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant
Conference on Complex Analysis and Geometry
复杂分析与几何会议
- 批准号:
1500302 - 财政年份:2015
- 资助金额:
$ 30.83万 - 项目类别:
Standard Grant