Complex Analysis and Geometry
复杂分析和几何
基本信息
- 批准号:0805877
- 负责人:
- 金额:$ 15.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex Analysis and GeometryThe research proposed deals with several areas on the interface of complex analysis and algebraic or symplectic geometry. The main project outlined seeks to develop a Delzant theory to classify completely integrable systems on compact manifolds with real algebraic type singularities of their action variables. These are meant to include the systems arising from spherical varieties (Gelfand-Cetlin examples) and those from quiver varieties at a minimum. The key tool would be Bohr-Sommerfeld level sets and their interplay with the geometry of the moment map in Hamiltonian dynamics. Other topics to be treated include regularity of exterior Monge-Ampere solutions and their relation to pluripotential theory; asymptotic geometry at infinity of complex manifolds, and renormalized Chern classes on them; some cases of the Hodge conjecture related to special Hodge-classes on higher dimensional complex manifolds derived from K3 surfaces, and the algebraicization of certain Grauert tubes.Philosophically, the first project is based on an idea going back to the beginning of quantum mechanics: the Bohr-Sommerfeld levels of a mechanical system, the set of configurations of a classical mechanical system which would contribute significantly to a quantum mechanical understanding of the system, as in, e.g., spectral lines of atoms. There was a later dual description of mechanics in terms of wave functions, and relating the two has been a source of great insight in physics and mathematics. What we suspect we have found, and are trying to prove, is that this Bohr-Sommerfeld correspondence underlies certain classification questions in classical mechanicalsystems: how many integrable systems are there? The Bohr-Sommerfeld levels are related directly to classical loci on the underlying space of the mechanical system, while the corresponding wave functions allow one to read off the algebraic geometry of the system. The main problem proposed is to make this "correspondence" rigorous, to the point where the systems can be classified by the combinatorial relations among the Bohr-Sommerfeld loci, and some global algebraic geometric data.
复分析和几何提出的研究涉及复分析和代数或辛几何的接口上的几个领域。概述的主要项目旨在发展一个Delzant理论,以分类完全可积系统的紧凑流形与真实的代数型奇异的作用变量。这意味着至少包括由球形变种(Gelfand-Cetlin例子)和球形变种产生的系统。关键的工具将是玻尔-索末菲水平集和它们与哈密顿动力学中矩映射几何的相互作用。其他要处理的主题包括外部Monge-Ampere解决方案的规律性和他们的关系,多能理论;渐近几何无穷的复杂的流形,并重整化陈类; Hodge猜想的一些情况与从K3曲面导出的高维复流形上的特殊Hodge类有关,以及某些Grauert管的代数化。从哲学上讲,第一个项目基于一个可以追溯到量子力学开始的想法:力学系统的玻尔-索末菲能级,经典力学系统的一组配置,这将大大有助于对系统的量子力学理解,例如,原子的光谱线后来有一种用波函数对力学的双重描述,将两者联系起来是物理学和数学中伟大洞察力的源泉。我们怀疑我们已经发现,并试图证明的是,这种玻尔-索末菲对应是经典力学系统中某些分类问题的基础:有多少个可积系统?玻尔-索末菲能级与力学系统底层空间的经典轨迹直接相关,而相应的波函数允许人们读出系统的代数几何。提出的主要问题是,使这种“对应关系”严格的,在那里的系统可以被分类的组合关系之间的玻尔-索末菲轨迹,和一些全球性的代数几何数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Burns其他文献
Matter Quantum Corrections to the Graviton Self-Energy and the Newtonian Potential
对引力子自能和牛顿势的物质量子修正
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Daniel Burns;A. Pilaftsis - 通讯作者:
A. Pilaftsis
Temperature-sensitive contacts in disordered loops tune enzyme I activity
无序环中的温度敏感接触可调节酶 I 活性
- DOI:
10.1101/2022.06.18.496683 - 发表时间:
2022 - 期刊:
- 影响因子:11.1
- 作者:
Daniel Burns;Aayushi Singh;Vincenzo Venditti;D. Potoyan - 通讯作者:
D. Potoyan
Branched stented anastomosis frozen elephant trunk repair: Early results from a physician-sponsored investigational device exemption study
- DOI:
10.1016/j.jtcvs.2023.09.069 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Eric E. Roselli;Patrick R. Vargo;Faisal Bakaeen;Marijan Koprivanac;Daniel Burns;Yuki Kuramochi;Marc Gillinov;Edward Soltesz;Michael Tong;Shinya Unai;Haytham Elgharably;Xiaoying Lou;Francis Caputo;Levester Kirksey;Jonathong Quatromoni;Ali Khalifeh;Viral Patel;Frank Cikach;James Witten;Andrew Tang - 通讯作者:
Andrew Tang
COMPARISONS IN GLOBAL AND SEGMENTAL LEFT VENTRICULAR LONGITUDINAL STRAINS IN DEGENERATIVE MITRAL REGURGITATION PATIENTS UNDERGOING SURGICAL INTERVENTION OR PERCUTANEOUS VALVE REPAIR
- DOI:
10.1016/s0735-1097(21)02747-9 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Maria Vega Brizneda;Sudarshana Datta;Tom Kai Ming Wang;Patrick Collier;Daniel Burns;Amar Krishnaswamy;Marc Gillinov;Brian Griffin;Christine Jellis - 通讯作者:
Christine Jellis
TCT CONNECT-117 Impact of Pre-Existing Pacemaker on Survival and Echocardiographic Outcomes After Transcatheter Aortic Valve Replacement With SAPIEN-3 Valve
- DOI:
10.1016/j.jacc.2020.09.131 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:
- 作者:
Yasser Sammour;Rama Dilip Gajulapalli;Hassan Lak;Sanchit Chawla;Cameron Incognito;Arnav Kumar;Kimi Sato;Jay Patel;James Yun;Zoran Popovic;Daniel Burns;Lars Svensson;Khaldoun Tarakji;Oussama Wazni;Grant Reed;Rishi Puri;Amar Krishnaswamy;Samir Kapadia - 通讯作者:
Samir Kapadia
Daniel Burns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Burns', 18)}}的其他基金
Mathematical Sciences: Complex Geometry and Analysis
数学科学:复杂几何与分析
- 批准号:
9408994 - 财政年份:1994
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference on Several ComplexVariables
数学科学:中西部多个复变量会议
- 批准号:
9216603 - 财政年份:1992
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Characterization of the Degree of Fracturing and the Nature of Fracture Alteration from MCS Logging Data at Site 395A, 418A and 504B
根据 395A、418A 和 504B 地点的 MCS 测井数据表征断裂程度和断裂蚀变性质
- 批准号:
8900316 - 财政年份:1989
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Midwest Conference Of Several ComplexVariables
数学科学:中西部复变量会议
- 批准号:
8611917 - 财政年份:1986
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Geometry Aware Exploratory Data Analysis and Inference Methods for Complex Data
复杂数据的几何感知探索性数据分析和推理方法
- 批准号:
2311034 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Complex Analysis in Algebraic Geometry for Symbolic Computation
符号计算的代数几何中的复分析
- 批准号:
574677-2022 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
University Undergraduate Student Research Awards
Study of Analysis and Geometry of complex spaces
复杂空间分析与几何研究
- 批准号:
21H00989 - 财政年份:2021
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-Archimedean Methods in Complex Analysis, Dynamics, and Geometry
复杂分析、动力学和几何中的非阿基米德方法
- 批准号:
1900025 - 财政年份:2019
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Modeling and analysis of material transport in complex geometry of neurons
神经元复杂几何形状中物质传输的建模和分析
- 批准号:
1804929 - 财政年份:2018
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
Conference on Complex Analysis and Geometry
复杂分析与几何会议
- 批准号:
1500302 - 财政年份:2015
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant