Mathematical Sciences: Complex Geometry and Analysis

数学科学:复杂几何与分析

基本信息

项目摘要

9408994 Burns This award continues support for mathematical research on geometric problems associated with domains and there boundaries situated in spaces of several complex variables. Two major areas of study will be undertaken. Both are concerned with interpretation of renormalized characteristic classes and their relation to analytic problems on complex manifolds with boundary. The first involves uniformization and structure of complex hyperbolic manifolds. The uniformization question is that of determining when a component of a complex manifold which is a compact, connected, spherical CR-manifold can be realized as a domain of a ball in n-complex variables modulo a properly discontinuous group of CR-automorphisms. The second line of investigation considers certain linear partial differential equations with the goal of finding analytic interpretations of characteristic numbers which are finite for Riemannian or Kahler manifolds of infinite volume. Work will also be done in an effort to prove a converse to a recent result on Grauert tubes. Namely, to show that all biholomorphisms of these manifolds are induced by isometries. Several complex variables arose at the beginning of the century as a natural outgrowth of studies of functions of one complex variable. It became clear early on that the theory differed widely from it predecessor. The underlying geometry was far more difficult to grasp and the function theory had far more affinity with partial differential operators of first order. It thus grew as a hybrid subject combining deep characteristics of differential geometry and differential equations. Many of the fundamental structures were defined in the last three decades. Current studies still concentrate on understanding these basic mathematical forms.
9408994伯恩斯该奖项继续支持与区域和边界相关的几何问题的数学研究,这些问题位于多个复变量空间中。将进行两个主要领域的研究。它们都涉及重整化特征类的解释以及它们与带边界的复流形上的分析问题的关系。第一个问题涉及复双曲流形的均匀化和结构。一致化问题是确定一个紧致的、连通的、球面的CR-流形的一个分支何时可以实现为以一组不连续的CR-自同构群为模的n-复变量球的区域。第二条研究线考虑某些线性偏微分方程组,目的是找到无限体积的黎曼流形或Kahler流形的有限特征数的解析解释。还将努力证明与最近关于格劳特管的结果相反的工作。也就是说,证明了这些流形的所有双全纯都是由等距诱导的。本世纪初出现了几个复变量,这是一个复变量函数研究的自然结果。很早就很明显,这一理论与其前身有很大不同。基本的几何学要难得多,而函数论与一阶偏微算符的亲和力要强得多。因此,它成长为一门混合学科,结合了微分几何和微分方程式的深刻特征。许多基本结构都是在过去30年里定义的。目前的研究仍然集中在理解这些基本的数学形式上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Burns其他文献

Matter Quantum Corrections to the Graviton Self-Energy and the Newtonian Potential
对引力子自能和牛顿势的物质量子修正
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Burns;A. Pilaftsis
  • 通讯作者:
    A. Pilaftsis
Temperature-sensitive contacts in disordered loops tune enzyme I activity
无序环中的温度敏感接触可调节酶 I 活性
Branched stented anastomosis frozen elephant trunk repair: Early results from a physician-sponsored investigational device exemption study
  • DOI:
    10.1016/j.jtcvs.2023.09.069
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eric E. Roselli;Patrick R. Vargo;Faisal Bakaeen;Marijan Koprivanac;Daniel Burns;Yuki Kuramochi;Marc Gillinov;Edward Soltesz;Michael Tong;Shinya Unai;Haytham Elgharably;Xiaoying Lou;Francis Caputo;Levester Kirksey;Jonathong Quatromoni;Ali Khalifeh;Viral Patel;Frank Cikach;James Witten;Andrew Tang
  • 通讯作者:
    Andrew Tang
COMPARISONS IN GLOBAL AND SEGMENTAL LEFT VENTRICULAR LONGITUDINAL STRAINS IN DEGENERATIVE MITRAL REGURGITATION PATIENTS UNDERGOING SURGICAL INTERVENTION OR PERCUTANEOUS VALVE REPAIR
  • DOI:
    10.1016/s0735-1097(21)02747-9
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Maria Vega Brizneda;Sudarshana Datta;Tom Kai Ming Wang;Patrick Collier;Daniel Burns;Amar Krishnaswamy;Marc Gillinov;Brian Griffin;Christine Jellis
  • 通讯作者:
    Christine Jellis
TCT CONNECT-117 Impact of Pre-Existing Pacemaker on Survival and Echocardiographic Outcomes After Transcatheter Aortic Valve Replacement With SAPIEN-3 Valve
  • DOI:
    10.1016/j.jacc.2020.09.131
  • 发表时间:
    2020-10-27
  • 期刊:
  • 影响因子:
  • 作者:
    Yasser Sammour;Rama Dilip Gajulapalli;Hassan Lak;Sanchit Chawla;Cameron Incognito;Arnav Kumar;Kimi Sato;Jay Patel;James Yun;Zoran Popovic;Daniel Burns;Lars Svensson;Khaldoun Tarakji;Oussama Wazni;Grant Reed;Rishi Puri;Amar Krishnaswamy;Samir Kapadia
  • 通讯作者:
    Samir Kapadia

Daniel Burns的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Burns', 18)}}的其他基金

Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    1105586
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0805877
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0514070
  • 财政年份:
    2005
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Complex Analysis and Geometry
复杂分析和几何
  • 批准号:
    0104047
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Midwest Conference on Several ComplexVariables
数学科学:中西部多个复变量会议
  • 批准号:
    9216603
  • 财政年份:
    1992
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Characterization of the Degree of Fracturing and the Nature of Fracture Alteration from MCS Logging Data at Site 395A, 418A and 504B
根据 395A、418A 和 504B 地点的 MCS 测井数据表征断裂程度和断裂蚀变性质
  • 批准号:
    8900316
  • 财政年份:
    1989
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Midwest Conference Of Several ComplexVariables
数学科学:中西部复变量会议
  • 批准号:
    8611917
  • 财政年份:
    1986
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
  • 批准号:
    1137952
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Nonhomogeneous Harmonic Analysis, Weights, and Applications to Problems in Complex Analysis and Operator Theory"
NSF/CBMS 数学科学区域会议 - “非齐次调和分析、权重以及在复分析和算子理论中问题的应用”
  • 批准号:
    0121284
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences Blocks of Finite Reductive Groups, Deligne-Luszig Varieties,and Complex Reflections Groups
NSF/CBMS 有限还原群、Deligne-Luszig 簇和复反射群数学科学块区域会议
  • 批准号:
    9714127
  • 财政年份:
    1998
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Geometry of Kernel Subgroups of Nonpositively Curved Cube Complex Groups
数学科学:非正曲立方复群核子群的几何
  • 批准号:
    9996342
  • 财政年份:
    1998
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Classical Complex Analysis
数学科学:经典复分析
  • 批准号:
    9800464
  • 财政年份:
    1998
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Integral Geometry and Analysis at Flag Domains
数学科学:复积分几何和标志域分析
  • 批准号:
    9706836
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry of Kernel Subgroups of Nonpositively Curved Cube Complex Groups
数学科学:非正曲立方复群核子群的几何
  • 批准号:
    9704417
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems of Complex Analysis Arising in Complex Dynamics
数学科学:复动力学中出现的复分析问题
  • 批准号:
    9706818
  • 财政年份:
    1997
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Simple and Complex Block Designs
数学科学:简单和复杂块设计中的问题
  • 批准号:
    9626115
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Weak Expansion in Real and Complex Dynamics
数学科学:实复杂动力学中的弱展开
  • 批准号:
    9796192
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了