Nonlinear Dispersive Waves and Applications to Geophysical Fluid Flows
非线性色散波及其在地球物理流体流动中的应用
基本信息
- 批准号:0104329
- 负责人:
- 金额:$ 17.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is organized around two leading themes in internal gravity wave propagation in stratified fluids: (a) interplay between nonlinearity and dispersion, and (b) instabilities and resonances. Within the first theme, the long term goal is to provide a model of internal waves in layered stratification that correctly accounts for dispersion and high nonlinearity, to be used in alternative to the currently adopted non-dispersive and weakly nonlinear models. The aim is to retain the advantage of the simplicity of these theories with respect to the full Euler (or Navier-Stokes) governing motion equations, while still maintaining the ability to describe wave dynamics of practical interest. Highly nonlinear regimes often generate instabilities. The causes and evolution of these instabilities for fully nonlinear internal waves are the focus within the second theme. In particular, stability criteria based on the Howard-Miles theorem for stationary shear flows and parametric instability occurring at stable Richardson's number will be revisited in the context of internal gravity waves.This research focuses on an area of wave propagation which has widespread atmospheric and oceanic applications, and, therefore, large societal implications. For instance, large internal waves generated by wind forcing of the upper ocean may have a strong feedback effect on the intensity of hurricanes. Thus, numerical codes based on models capable of representing accurately large amplitude waves and their dispersive behavior (responsible for the spreading of wave energy over increasingly larger regions) can play an important role in hurricane forecasts, at little additional cost with respect to the currently employed hydrostatic codes. The award will support work that will help establish the theoretical and technical foundations of such improved computational codes.
本项目围绕分层流体中重力内波传播的两个主要主题进行组织:(a)非线性和色散之间的相互作用,以及(B)不稳定性和共振。 在第一个主题中,长期目标是提供一个分层分层的内波模型,该模型正确地考虑了色散和高非线性,用于替代目前采用的非色散和弱非线性模型。 其目的是保留这些理论相对于完整的欧拉(或Navier-Stokes)运动方程的简单性的优点,同时仍然保持描述实际感兴趣的波动动力学的能力。 高度非线性的区域通常会产生不稳定性。 完全非线性内波不稳定性的原因和演化是第二个主题的重点。 特别是,稳定性标准的基础上的霍华德-迈尔斯定理的定常剪切流和参数不稳定性发生在稳定的理查森数将重新审视的背景下,内部gravitationwave.This研究的重点是波传播的一个领域,具有广泛的大气和海洋的应用,因此,大的社会影响。 例如,上层海洋风力产生的大型内波可能对飓风的强度产生强烈的反馈效应。 因此,基于能够准确表示大振幅波及其色散行为(负责波能在越来越大的区域内传播)的模型的数值代码可以在飓风预报中发挥重要作用,而与目前采用的流体静力学代码相比,成本几乎没有增加。 该奖项将支持有助于建立这种改进的计算代码的理论和技术基础的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Camassa其他文献
Brachistochrones in potential flow and the connection to Darwin's theorem
- DOI:
10.1016/j.physleta.2008.06.093 - 发表时间:
2008-11-10 - 期刊:
- 影响因子:
- 作者:
Roberto Camassa;Richard M. McLaughlin;Matthew N.J. Moore;Ashwin Vaidya - 通讯作者:
Ashwin Vaidya
Roberto Camassa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roberto Camassa', 18)}}的其他基金
A Combined Theoretical and Experimental Approach for Internal Wave Dynamics: Coupling to Free Surface and Instabilities
内波动力学的理论与实验相结合的方法:自由表面和不稳定性的耦合
- 批准号:
1517879 - 财政年份:2015
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
MRI: Development of Pneumatic Water Wave Genesis, a versatile wavemaker for the UNC Joint Fluids Lab
MRI:开发气动水波起源,这是北卡罗来纳大学联合流体实验室的多功能造波机
- 批准号:
1229471 - 财政年份:2012
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Collaborative Proposal: Southeastern Atlantic Mathematical Sciences Workshop
合作提案:东南大西洋数学科学研讨会
- 批准号:
0739409 - 财政年份:2008
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Collaborative Proposal: Southeastern Atlantic Mathematical Sciences Workshop, 2007 Meeting
合作提案:东南大西洋数学科学研讨会,2007 年会议
- 批准号:
0739408 - 财政年份:2007
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
"CMG Collaborative Research": A Systematic Approach to Large Amplitude Internal Wave Dynamics: An Integrated Mathematical, Observational, and Remote Sensing Model
“CMG 协作研究”:大振幅内波动力学的系统方法:综合数学、观测和遥感模型
- 批准号:
0620687 - 财政年份:2006
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Acquisition of A Modular Wave Tank for Fundamental and Applied Research in the New UNC Multiscale Fluid Dynamics Lab
采购模块化造波池,用于新北卡罗来纳大学多尺度流体动力学实验室的基础和应用研究
- 批准号:
0619665 - 财政年份:2006
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Strongly Nonlinear Wave and Transport Models in Stratified Fluids
分层流体中的强非线性波和输运模型
- 批准号:
0509423 - 财政年份:2005
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Collaborative Proposal: Southeastern Applied Mathematics Days
合作提案:东南应用数学日
- 批准号:
0408027 - 财政年份:2004
- 资助金额:
$ 17.35万 - 项目类别:
Continuing Grant
A Distributed, High Performance Computing System for the Applied Sciences
适用于应用科学的分布式高性能计算系统
- 批准号:
0116625 - 财政年份:2001
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
相似海外基金
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
- 批准号:
2107945 - 财政年份:2021
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
- 批准号:
21K03315 - 财政年份:2021
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global studies on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的全局研究
- 批准号:
18K03379 - 财政年份:2018
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of two parameter family of solitary waves for nonlinear dispersive equations
非线性色散方程孤立波二参数族的稳定性
- 批准号:
18J11090 - 财政年份:2018
- 资助金额:
$ 17.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Nonlinear Dispersive Water Waves in Multiscale Interaction Problems
多尺度相互作用问题中的非线性色散水波
- 批准号:
1615480 - 财政年份:2016
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
- 批准号:
1211183 - 财政年份:2012
- 资助金额:
$ 17.35万 - 项目类别:
Standard Grant