A-Posteriori-Error-Estimates-Based Numerical Methods for Shallow Water and Hamilton-Jacobi Equations

基于后验误差估计的浅水和 Hamilton-Jacobi 方程的数值方法

基本信息

  • 批准号:
    0107609
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to devising and studying, theoretically as well as computationally, efficient methods for numerically solving problems in which convection plays a significant role. A wide range of situations falls into this category and, although what we propose to develop can be easily applied to most of them, we are going to focus our efforts into two of them. The first, modeled by the shallow water equations, is the study of hurricane forecasting and of environmental studies in ports, and the second, modeled by the Hamilton-Jacobi equations, is the study of terrain navigation (computation of minimum time transit paths) of robotic vehicles and material etching in integrated circuit fabrication. The main focus of the project is the devising of the so-called a posteriori error estimates that are the basis for mathematically sound hp-adaptive algorithms.We consider the problem of how to efficiently obtain highly accurate computer simulations of several physical phenomena of practical interest, namely, hurricane forecasting in the Gulf of Mexico and environmental studies in ports, and the computation of minimum time transit paths of robotic vehicles and material etching in integrated circuit fabrication. Since the exact solution of these complex problems is not known, in order to guarantee a given accuracy of the simulation, special techniques have to be suitably devised in order to assess its quality. Moreover, these techniques can be employed to automatically let the computer know when and where to increase or decrease the computational effort to obtain the simulation; in this way, the efficiency of its computation can be significantly enhanced.
该项目致力于设计和研究,理论上以及计算上,有效的方法,数值求解问题,其中对流起着重要的作用。许多情况福尔斯都属于这一类别,虽然我们建议制定的办法可以很容易地适用于其中大多数情况,但我们将集中精力处理其中两种情况。第一,浅水方程建模,是飓风预报和港口环境研究的研究,第二,由哈密尔顿-雅可比方程建模,是地形导航(计算最小时间过境路径)的机器人车辆和集成电路制造中的材料蚀刻的研究。该项目的主要重点是设计所谓的后验误差估计,这是数学上健全的hp自适应算法的基础。我们考虑的问题是如何有效地获得高度准确的计算机模拟的几个物理现象的实际利益,即,飓风预报在墨西哥湾和港口环境研究,以及集成电路制造中机器人车辆和材料蚀刻的最小时间通过路径的计算。由于这些复杂问题的确切解决方案是未知的,为了保证给定的模拟精度,必须适当地设计特殊的技术,以评估其质量。此外,这些技术可以用来自动让计算机知道何时以及在何处增加或减少计算工作量以获得模拟;以这种方式,其计算效率可以显着提高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernardo Cockburn其他文献

Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG$$_{k}$$k Method
反应扩散方程的超收敛插值 HDG 方法 I:HDG$$_{k}$$k 方法
  • DOI:
    10.1007/s10915-019-01081-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gang Chen;Bernardo Cockburn;John Singler;Yangwen Zhang
  • 通讯作者:
    Yangwen Zhang
Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems
二阶椭圆问题的原-对偶伽辽金逼近的超逼近性
  • DOI:
    10.1007/s10915-017-0538-0
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bernardo Cockburn;M. Sánchez;C. Xiong
  • 通讯作者:
    C. Xiong
Turbo Post-processing for Discontinuous Galerkin Methods: One-Dimensional Linear Transport
  • DOI:
    10.1007/s10915-025-02887-0
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Bernardo Cockburn;Zubin Lal
  • 通讯作者:
    Zubin Lal
Influence of tissue viscoelasticity on the optic nerve head perfusion: a mathematical model
组织粘弹性对视神经乳头灌注的影响:数学模型
  • DOI:
    10.14233/ajchem.2023.27482
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Daniele Prada;R. Sacco;Bernardo Cockburn;L. Bociu;J. Webster;B. Siesky;A. Harris;G. Guidoboni
  • 通讯作者:
    G. Guidoboni

Bernardo Cockburn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernardo Cockburn', 18)}}的其他基金

Superconvergent Approximations by Galerkin Methods for Partial Differential Equations
偏微分方程的伽辽金法超收敛逼近
  • 批准号:
    1912646
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
  • 批准号:
    1522657
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
  • 批准号:
    1115331
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin Methods for Partial Differential Equations
偏微分方程的间断伽辽金法
  • 批准号:
    0712955
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin and Hybridized Methods for Partial Differential Equations
偏微分方程的不连续伽辽金和混合方法
  • 批准号:
    0411254
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
A Posteriori Error Estimates for Discontinuous Finite Element Methods Applied to Problems in Geosciences and Medicine
应用于地球科学和医学问题的不连续有限元方法的后验误差估计
  • 批准号:
    9807491
  • 财政年份:
    1998
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Methods for Convection Dominated Problems
数学科学:对流主导问题的数值方法
  • 批准号:
    9407952
  • 财政年份:
    1994
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Methods for Convection-Dominated Problems
数学科学:对流主导问题的数值方法
  • 批准号:
    9103997
  • 财政年份:
    1991
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A posteriori error estimates for hyperbolic conservation laws
双曲守恒定律的后验误差估计
  • 批准号:
    298418-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Study of the discontinuous Galerkin methods and their a posteriori error estimates
间断伽辽金方法及其后验误差估计的研究
  • 批准号:
    19540115
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A posteriori error estimates for hyperbolic conservation laws
双曲守恒定律的后验误差估计
  • 批准号:
    298418-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A posteriori error estimates for hyperbolic conservation laws
双曲守恒定律的后验误差估计
  • 批准号:
    298418-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
A posteriori error estimates for hyperbolic conservation laws
双曲守恒定律的后验误差估计
  • 批准号:
    298418-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive algorithms and A-posteriori & A-priori error estimates for the p and h-p finite element methods
自适应算法和后验
  • 批准号:
    46726-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了