Mathematical Sciences: Numerical Methods for Convection-Dominated Problems

数学科学:对流主导问题的数值方法

基本信息

  • 批准号:
    9103997
  • 负责人:
  • 金额:
    $ 7.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1994-02-28
  • 项目状态:
    已结题

项目摘要

The main objective of this project is to develop, theoretically as well as computationally, efficient numerical methods for solving problems in which convection dominates diffusion. The solutions of such equations typically exhibit shocks, whose accurate and efficient computation is difficult. Special attention will be paid to nonlinear hyperbolic systems, to models of semiconductor devices, and to compressible Navier-Stokes equations for viscous flows. Study of numerical methods will center on the so-called Runge-Kutta Discontinuous Galerkin method, a parallelizable method that adopts from several finite-difference methods their techniques for evaluating cell fluxes. This work will extend to higher dimensions earlier results on one-dimensional problems. Applications of this research arise in studying and designing semiconductor devices when using the drift-diffusion and hydrodynamic models to describe the devices, and in solving flow problems that come from aerodynamics.
该项目的主要目标是开发, 理论上和计算上,有效的数值 对流占优问题的解法 扩散 这些方程的解通常表现为: 冲击,其准确和有效的计算是困难的。 将特别注意非线性双曲系统, 半导体器件的模型,以及可压缩 粘性流的Navier-Stokes方程。 数值研究 方法将集中在所谓的龙格库塔间断 Galerkin方法是一种可并行化的方法, 有限差分法及其计算单元的技术 剂. 这项工作将更早地扩展到更高的维度 一维问题的结果。 这项研究的应用出现在研究和 设计半导体器件时使用漂移扩散 和流体动力学模型来描述设备,并在解决 来自空气动力学的流动问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernardo Cockburn其他文献

Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG$$_{k}$$k Method
反应扩散方程的超收敛插值 HDG 方法 I:HDG$$_{k}$$k 方法
  • DOI:
    10.1007/s10915-019-01081-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gang Chen;Bernardo Cockburn;John Singler;Yangwen Zhang
  • 通讯作者:
    Yangwen Zhang
Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems
二阶椭圆问题的原-对偶伽辽金逼近的超逼近性
  • DOI:
    10.1007/s10915-017-0538-0
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bernardo Cockburn;M. Sánchez;C. Xiong
  • 通讯作者:
    C. Xiong
Turbo Post-processing for Discontinuous Galerkin Methods: One-Dimensional Linear Transport
  • DOI:
    10.1007/s10915-025-02887-0
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Bernardo Cockburn;Zubin Lal
  • 通讯作者:
    Zubin Lal
Static Condensation, Hybridization, and the Devising of the HDG Methods
  • DOI:
    10.1007/978-3-319-41640-3_5
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernardo Cockburn
  • 通讯作者:
    Bernardo Cockburn

Bernardo Cockburn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernardo Cockburn', 18)}}的其他基金

Superconvergent Approximations by Galerkin Methods for Partial Differential Equations
偏微分方程的伽辽金法超收敛逼近
  • 批准号:
    1912646
  • 财政年份:
    2019
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
  • 批准号:
    1522657
  • 财政年份:
    2015
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
  • 批准号:
    1115331
  • 财政年份:
    2011
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin Methods for Partial Differential Equations
偏微分方程的间断伽辽金法
  • 批准号:
    0712955
  • 财政年份:
    2007
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin and Hybridized Methods for Partial Differential Equations
偏微分方程的不连续伽辽金和混合方法
  • 批准号:
    0411254
  • 财政年份:
    2004
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
A-Posteriori-Error-Estimates-Based Numerical Methods for Shallow Water and Hamilton-Jacobi Equations
基于后验误差估计的浅水和 Hamilton-Jacobi 方程的数值方法
  • 批准号:
    0107609
  • 财政年份:
    2001
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
A Posteriori Error Estimates for Discontinuous Finite Element Methods Applied to Problems in Geosciences and Medicine
应用于地球科学和医学问题的不连续有限元方法的后验误差估计
  • 批准号:
    9807491
  • 财政年份:
    1998
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Methods for Convection Dominated Problems
数学科学:对流主导问题的数值方法
  • 批准号:
    9407952
  • 财政年份:
    1994
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
  • 批准号:
    0938235
  • 财政年份:
    2010
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
  • 批准号:
    0630571
  • 财政年份:
    2007
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Mathematical and Numerical Treatment of Fluid Flow and Transport in Porous Media" - "May 23-27, 2006"
NSF/CBMS 数学科学区域会议 - “多孔介质中流体流动和传输的数学和数值处理” - “2006 年 5 月 23-27 日”
  • 批准号:
    0532039
  • 财政年份:
    2006
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Numerical Methods in Forward and Inverse Electromagnetic Scattering" - June 3-7, 2002
NSF/CBMS 数学科学区域会议 - “正向和逆向电磁散射的数值方法” - 2002 年 6 月 3-7 日
  • 批准号:
    0121301
  • 财政年份:
    2001
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
  • 批准号:
    9896361
  • 财政年份:
    1998
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
  • 批准号:
    9633686
  • 财政年份:
    1997
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
  • 批准号:
    9619836
  • 财政年份:
    1997
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
Conference on Numerical Analysis and Domain Decomposition at the Courant Institute of Mathematical Sciences; New York, NY; January 23-24, l998
库朗数学科学研究所数值分析和域分解会议;
  • 批准号:
    9725103
  • 财政年份:
    1997
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Numerical Analysis for Time-Dependent Differential Equations
数学科学:时态微分方程的数值分析
  • 批准号:
    9504879
  • 财政年份:
    1996
  • 资助金额:
    $ 7.86万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了