Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
基本信息
- 批准号:1115331
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposal, the investigator studies and develops a new, emerging generation of discontinuous Galerkin methods characterized by being easier to implement, by having enhanced stability and convergence properties, and by displaying an improved flexibility for handling arbitrarily-shaped domains. The investigator will focuses his effort in four particular problems. The first is in the area of fluid flow and consists in establishing a general theory of very competitive numerical methods for the incompressible Navier-Stokes equations. The second is in the area of continuum mechanics and consists in the study of optimally convergent methods for fourth-order problems in order to pave the way to the devising of numerical methods for non-linear shells. The third is in the area of non-linear conservation laws and consists in the introduction of new techniques geared towards overcoming the two main difficulties that have dragged down for more than a decade the development of efficient, high-order accurate methods for these useful equations. The last is in the area of techniques for handling curved boundaries and consists in replacing the traditional paradigm of meshing the domain with high accuracy by the new approach of using a very simple mesh of a box containing the domain and employing special approximation techniques near its border.The computer simulation of physical phenomena is a highly valued tool of practical interest in a wide variety of applications in Engineering and Physics. The investigator studies an emerging and promising technique of carrying out these simulations with highly accurate and more efficient algorithms for a wide range of problems of practical interest. They include many applications to Aerospace and Mechanics (incompressible fluid flow, subsonic and supersonic flow) as well as to Civil Engineering (solid structures).
在这项提案中,研究人员研究和开发了一个新的,新兴的一代不连续Galerkin方法,其特点是更容易实现,具有增强的稳定性和收敛性,并显示出更好的灵活性,处理任意形状的域。研究者将集中精力解决四个具体问题。第一个是在流体流动领域,包括建立一个非常有竞争力的不可压缩Navier-Stokes方程的数值方法的一般理论。第二个是在连续介质力学领域,包括研究四阶问题的最佳收敛方法,以便为非线性壳体的数值方法的设计铺平道路。第三个是在非线性守恒定律领域,包括引进新技术,以克服两个主要困难,这两个困难已经拖了十多年,为这些有用的方程开发高效,高阶精确的方法。最后是在处理弯曲边界的技术领域,包括用一种新的方法取代传统的高精度网格化域的范例,这种新方法使用一个非常简单的包含域的盒子网格,并在其边界附近采用特殊的近似技术。物理现象的计算机模拟在工程和物理学的各种应用中是一种具有实际意义的高度有价值的工具。研究人员研究了一种新兴的和有前途的技术,该技术可以用高度准确和更有效的算法来进行这些模拟,以解决各种实际问题。它们包括航空航天和机械(不可压缩流体流动,亚音速和超音速流动)以及土木工程(固体结构)的许多应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernardo Cockburn其他文献
Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.5
- 作者:
Fatih Celiker;Bernardo Cockburn;Ke Shi - 通讯作者:
Ke Shi
Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG$$_{k}$$k Method
反应扩散方程的超收敛插值 HDG 方法 I:HDG$$_{k}$$k 方法
- DOI:
10.1007/s10915-019-01081-3 - 发表时间:
2019 - 期刊:
- 影响因子:2.5
- 作者:
Gang Chen;Bernardo Cockburn;John Singler;Yangwen Zhang - 通讯作者:
Yangwen Zhang
Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems
二阶椭圆问题的原-对偶伽辽金逼近的超逼近性
- DOI:
10.1007/s10915-017-0538-0 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Bernardo Cockburn;M. Sánchez;C. Xiong - 通讯作者:
C. Xiong
Turbo Post-processing for Discontinuous Galerkin Methods: One-Dimensional Linear Transport
- DOI:
10.1007/s10915-025-02887-0 - 发表时间:
2025-04-03 - 期刊:
- 影响因子:3.300
- 作者:
Bernardo Cockburn;Zubin Lal - 通讯作者:
Zubin Lal
Influence of tissue viscoelasticity on the optic nerve head perfusion: a mathematical model
组织粘弹性对视神经乳头灌注的影响:数学模型
- DOI:
10.14233/ajchem.2023.27482 - 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Daniele Prada;R. Sacco;Bernardo Cockburn;L. Bociu;J. Webster;B. Siesky;A. Harris;G. Guidoboni - 通讯作者:
G. Guidoboni
Bernardo Cockburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernardo Cockburn', 18)}}的其他基金
Superconvergent Approximations by Galerkin Methods for Partial Differential Equations
偏微分方程的伽辽金法超收敛逼近
- 批准号:
1912646 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
- 批准号:
1522657 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Discontinuous Galerkin Methods for Partial Differential Equations
偏微分方程的间断伽辽金法
- 批准号:
0712955 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Discontinuous Galerkin and Hybridized Methods for Partial Differential Equations
偏微分方程的不连续伽辽金和混合方法
- 批准号:
0411254 - 财政年份:2004
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
A-Posteriori-Error-Estimates-Based Numerical Methods for Shallow Water and Hamilton-Jacobi Equations
基于后验误差估计的浅水和 Hamilton-Jacobi 方程的数值方法
- 批准号:
0107609 - 财政年份:2001
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
A Posteriori Error Estimates for Discontinuous Finite Element Methods Applied to Problems in Geosciences and Medicine
应用于地球科学和医学问题的不连续有限元方法的后验误差估计
- 批准号:
9807491 - 财政年份:1998
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Methods for Convection Dominated Problems
数学科学:对流主导问题的数值方法
- 批准号:
9407952 - 财政年份:1994
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Methods for Convection-Dominated Problems
数学科学:对流主导问题的数值方法
- 批准号:
9103997 - 财政年份:1991
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
- 批准号:
568008-2022 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Postdoctoral Fellowships
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
- 批准号:
2208391 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Fracture propagation in glaciers using discontinuous Galerkin finite element methods
使用不连续伽辽金有限元方法研究冰川中的裂缝扩展
- 批准号:
2729638 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Studentship
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
- 批准号:
RGPIN-2017-04581 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




