Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
基本信息
- 批准号:1522657
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer simulation of physical phenomena is a highly valued tool of practical importance in a wide variety of applications in science and engineering. This project studies two new, promising techniques of carrying out these simulations with highly accurate and more efficient algorithms for a wide range of problems of practical interest. They include many applications to aerospace and mechanics (incompressible fluid flow, subsonic and supersonic flow) as well as to civil engineering (solid structures). This research project aims to introduce a systematic way of obtaining new, competitive discontinuous Galerkin and mixed methods that superconverge on unstructured meshes made of elements of arbitrary shape. This will be done for a wide variety of partial differential equations arising in fluid dynamics (including the incompressible Navier-Stokes equations) and continuum mechanics (including the equations of large deformation elasticity), both linear and nonlinear. The project will also consider adjoint-recovery methods that will result in a very efficient way of obtaining more accuracy than previously thought possible from general finite element approximations. By only doubling the computational effort, the order of accuracy of the approximation will be doubled. In particular, the application of this technique to methods satisfying a Galerkin orthogonality property will result in the quadrupling of the order of accuracy.
物理现象的计算机模拟在科学和工程的各种应用中具有很高的实用价值。该项目研究了两种新的、有前途的技术,以高精度和更有效的算法来进行这些模拟,以解决广泛的实际问题。它们包括许多应用于航空航天和力学(不可压缩流体流动,亚音速和超音速流动)以及土木工程(固体结构)。本研究项目旨在引入一种系统的方法来获得新的、竞争的不连续伽辽金和混合方法,这些方法在由任意形状的元素组成的非结构化网格上超收敛。这将用于流体力学(包括不可压缩的Navier-Stokes方程)和连续介质力学(包括大变形弹性方程)中出现的各种线性和非线性偏微分方程。该项目还将考虑伴随恢复方法,这将导致一种非常有效的方法,比以前认为的一般有限元近似可能获得更高的精度。只需加倍计算量,逼近的精度阶数就会加倍。特别地,将这种技术应用于满足伽辽金正交性的方法将使精度的阶数提高四倍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernardo Cockburn其他文献
Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG$$_{k}$$k Method
反应扩散方程的超收敛插值 HDG 方法 I:HDG$$_{k}$$k 方法
- DOI:
10.1007/s10915-019-01081-3 - 发表时间:
2019 - 期刊:
- 影响因子:2.5
- 作者:
Gang Chen;Bernardo Cockburn;John Singler;Yangwen Zhang - 通讯作者:
Yangwen Zhang
Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.5
- 作者:
Fatih Celiker;Bernardo Cockburn;Ke Shi - 通讯作者:
Ke Shi
Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems
二阶椭圆问题的原-对偶伽辽金逼近的超逼近性
- DOI:
10.1007/s10915-017-0538-0 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Bernardo Cockburn;M. Sánchez;C. Xiong - 通讯作者:
C. Xiong
Turbo Post-processing for Discontinuous Galerkin Methods: One-Dimensional Linear Transport
- DOI:
10.1007/s10915-025-02887-0 - 发表时间:
2025-04-03 - 期刊:
- 影响因子:3.300
- 作者:
Bernardo Cockburn;Zubin Lal - 通讯作者:
Zubin Lal
Static Condensation, Hybridization, and the Devising of the HDG Methods
- DOI:
10.1007/978-3-319-41640-3_5 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bernardo Cockburn - 通讯作者:
Bernardo Cockburn
Bernardo Cockburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernardo Cockburn', 18)}}的其他基金
Superconvergent Approximations by Galerkin Methods for Partial Differential Equations
偏微分方程的伽辽金法超收敛逼近
- 批准号:
1912646 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
- 批准号:
1115331 - 财政年份:2011
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Discontinuous Galerkin Methods for Partial Differential Equations
偏微分方程的间断伽辽金法
- 批准号:
0712955 - 财政年份:2007
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Discontinuous Galerkin and Hybridized Methods for Partial Differential Equations
偏微分方程的不连续伽辽金和混合方法
- 批准号:
0411254 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
A-Posteriori-Error-Estimates-Based Numerical Methods for Shallow Water and Hamilton-Jacobi Equations
基于后验误差估计的浅水和 Hamilton-Jacobi 方程的数值方法
- 批准号:
0107609 - 财政年份:2001
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
A Posteriori Error Estimates for Discontinuous Finite Element Methods Applied to Problems in Geosciences and Medicine
应用于地球科学和医学问题的不连续有限元方法的后验误差估计
- 批准号:
9807491 - 财政年份:1998
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Methods for Convection Dominated Problems
数学科学:对流主导问题的数值方法
- 批准号:
9407952 - 财政年份:1994
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Methods for Convection-Dominated Problems
数学科学:对流主导问题的数值方法
- 批准号:
9103997 - 财政年份:1991
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
Hybridizable间断谱元方法及其在波散射问题中的应用
- 批准号:11341002
- 批准年份:2013
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2208231 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
- 批准号:
2310340 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybridizable discontinuous Galerkin methods for the Cahn-Hilliard-Navier-Stokes system
Cahn-Hilliard-Navier-Stokes 系统的可杂交间断伽辽金方法
- 批准号:
566831-2021 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergence-Free Hybridizable Discontinuous Galerkin Methods for the Incompressible Navier-Stokes Equations on Moving Domains and Their Application to Fluid-Structure Interaction
运动域不可压缩纳维-斯托克斯方程的无散杂化间断伽辽金方法及其在流固耦合中的应用
- 批准号:
2012031 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
- 批准号:
534997-2019 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modeling and Hybridizable Discontinuous Galerkin Methods for Two-phase Flows in Karstic Geometry
岩溶几何中两相流的建模和可混合间断伽辽金方法
- 批准号:
1912715 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant














{{item.name}}会员




