Superconvergent Approximations by Galerkin Methods for Partial Differential Equations

偏微分方程的伽辽金法超收敛逼近

基本信息

  • 批准号:
    1912646
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The computer simulation of physical phenomena is a highly valued tool of practical interest in a wide variety of applications in Engineering and Physics. The investigator will study two new, promising techniques of carrying out these simulations with highly accurate and more efficient algorithms for a wide range of problems of practical interest. They include many applications to Aerospace and Mechanics (heat flow, incompressible fluid flow, subsonic and supersonic flow) as well as to Civil and Mechanical Engineering (seismic wave propagation and elastodynamics of solid structures).The investigator proposes to continue to develop a recently uncovered adjoint-recovery method which can reduce the cost of computing approximations of linear and nonlinear functionals by Galerkin methods by several orders of magnitude. The incorporation of adaptivity techniques, to deal with the varying degree of regularity of the solution, and the extension of this approach to the computation of nonlinear functionals, like the eigenvalues of a differential operator, will render the method of great practical value. The investigator will also develop new discretization techniques for partial differential equations with Hamiltonian structure. They combine superconvergent discontinuous Galerkin space discretizations with symplectic time-marching schemes and result in methods with an energy which does not drift. Such methods are important in many applications including seismic wave propagation and elastodynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理现象的计算机模拟在工程和物理学的广泛应用中是一种非常有价值的实用工具。研究人员将研究两种新的,有前途的技术进行这些模拟与高度准确和更有效的算法,为广泛的实际利益的问题。它们包括航空航天和机械的许多应用(热流,不可压缩流体流,亚音速和超音速流)以及土木和机械工程(地震波传播和固体结构的弹性动力学)。研究人员建议继续开发最近发现的伴随-恢复方法,它可以减少计算成本的近似的线性和非线性泛函的Galerkin方法的几个数量级。自适应技术的结合,以处理不同程度的正则性的解决方案,并扩展这种方法的非线性泛函的计算,如微分算子的特征值,将使该方法具有很大的实用价值。研究人员还将开发新的离散技术的偏微分方程的哈密顿结构。他们结合联合收割机超收敛间断Galerkin空间离散辛时间推进计划,并导致在方法的能量不漂移。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combining finite element space-discretizations with symplectic time-marching schemes for linear Hamiltonian systems
Symplectic Hamiltonian HDG methods for wave propagation phenomena
  • DOI:
    10.1016/j.jcp.2017.09.010
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sánchez;C. Ciucă;N. Nguyen;J. Peraire;Bernardo Cockburn
  • 通讯作者:
    M. Sánchez;C. Ciucă;N. Nguyen;J. Peraire;Bernardo Cockburn
Symplectic Hamiltonian finite element methods for linear elastodynamics
线性弹性动力学的辛哈密顿有限元方法
Discontinuous Galerkin Methods with Time-Operators in Their Numerical Traces for Time-Dependent Electromagnetics
时变电磁学数值迹中带有时间算子的不连续伽辽金方法
An adjoint-based adaptive error approximation of functionals by the hybridizable discontinuous Galerkin method for second-order elliptic equations
二阶椭圆方程的可混合间断伽辽金法的基于伴随的泛函自适应误差逼近
  • DOI:
    10.1016/j.jcp.2022.111078
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Cockburn, Bernardo;Xia, Shiqiang
  • 通讯作者:
    Xia, Shiqiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernardo Cockburn其他文献

Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams
Timoshenko 梁的可杂交间断伽辽金方法
Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG$$_{k}$$k Method
反应扩散方程的超收敛插值 HDG 方法 I:HDG$$_{k}$$k 方法
  • DOI:
    10.1007/s10915-019-01081-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gang Chen;Bernardo Cockburn;John Singler;Yangwen Zhang
  • 通讯作者:
    Yangwen Zhang
Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems
二阶椭圆问题的原-对偶伽辽金逼近的超逼近性
  • DOI:
    10.1007/s10915-017-0538-0
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bernardo Cockburn;M. Sánchez;C. Xiong
  • 通讯作者:
    C. Xiong
Turbo Post-processing for Discontinuous Galerkin Methods: One-Dimensional Linear Transport
  • DOI:
    10.1007/s10915-025-02887-0
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Bernardo Cockburn;Zubin Lal
  • 通讯作者:
    Zubin Lal
Static Condensation, Hybridization, and the Devising of the HDG Methods
  • DOI:
    10.1007/978-3-319-41640-3_5
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernardo Cockburn
  • 通讯作者:
    Bernardo Cockburn

Bernardo Cockburn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernardo Cockburn', 18)}}的其他基金

Superconvergent Hybridizable Discontinuous Galerkin and Mixed Methods for Partial Differential Equations
偏微分方程的超收敛杂化间断伽辽金和混合方法
  • 批准号:
    1522657
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Superconvergent Discontinuous Galerkin methods for Partial Differential Equations
偏微分方程的超收敛间断伽辽金法
  • 批准号:
    1115331
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin Methods for Partial Differential Equations
偏微分方程的间断伽辽金法
  • 批准号:
    0712955
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin and Hybridized Methods for Partial Differential Equations
偏微分方程的不连续伽辽金和混合方法
  • 批准号:
    0411254
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
A-Posteriori-Error-Estimates-Based Numerical Methods for Shallow Water and Hamilton-Jacobi Equations
基于后验误差估计的浅水和 Hamilton-Jacobi 方程的数值方法
  • 批准号:
    0107609
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A Posteriori Error Estimates for Discontinuous Finite Element Methods Applied to Problems in Geosciences and Medicine
应用于地球科学和医学问题的不连续有限元方法的后验误差估计
  • 批准号:
    9807491
  • 财政年份:
    1998
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Methods for Convection Dominated Problems
数学科学:对流主导问题的数值方法
  • 批准号:
    9407952
  • 财政年份:
    1994
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Numerical Methods for Convection-Dominated Problems
数学科学:对流主导问题的数值方法
  • 批准号:
    9103997
  • 财政年份:
    1991
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
  • 批准号:
    2239234
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
  • 批准号:
    2238836
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
  • 批准号:
    2405605
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
  • 批准号:
    2247334
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Gradient approximations and Hessian approximations: theory, algorithms and applications
梯度近似和 Hessian 近似:理论、算法和应用
  • 批准号:
    559838-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
  • 批准号:
    2204614
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
  • 批准号:
    RGPIN-2016-06167
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了