Smart Sensors for In Situ Monitoring of Hydrothermal Vent Systems
用于热液喷口系统原位监测的智能传感器
基本信息
- 批准号:0119999
- 负责人:
- 金额:$ 240.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-10-01 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractSmart Sensors for In Situ Monitoring of Hydrothermal Vent Systems.Proposal: 0119999 Date: June 27, 2001PI: Booksh Institution: Arizona State UniversityThis project is supported by the program Biocomplexity in the Environment, subprogram Instrumentation Development for Environmental Activities (BE-IDEA). The objective of this project is to develop a suite of five sensors designed for in situ analysis of the ecosystem in and around hydrothermal deep-sea vents. This ecosystem may be one of the most ancient of Earth and have had a long-term effect on global geochemical cycles, yet it is one of the least well understood. Hydrothermal vent ecosystems are in a turbulent state of disequilibrium with large gradients of thermal and chemical energy. Along this thermal/chemical gradient a complex ecosystem of tube worms, thermophilic microbes, and specially adapted crustaceans and fish survive The sensors are chosen that best monitor the physical, chemical, and biological environment of the vent ecosystem to better understand the inter-relationship between this unique environment and the life that it supports. The development of in situ chemical sensors will provide a significant advancement in the state of the art of hydrothermal vent monitoring. We will employ a fiber optic surface plasmon resonance (SPR) based sensor integrated with a thermocouple and conductivity sensor to better measure the density hydrothermal vent fluid and salinity of the seawater surrounding the vent. Fiber optic SPR sensors can be made sufficiently small and sensitive to probe the vent fluid/sea water gradient where many thermophilic microbes reside. A fiber optic coupled grating light reflectance spectroscopy (GLRS) sensor will be employed to monitor the size distribution and relative abundance of mineral precipitates that form during the mixing of vent fluid and sea water. This precipitate forms the vent chimney walls where most microbes reside. Fiber optic Raman spectroscopy probes will be tested to detect trace organic molecules that may be forming biotically or abiotically in the vent fluid. Raman spectroscopy will also be tested to survey the mineral and microbial distribution on the vent walls. An ambient pressure driven liquid chromatography-Raman spectroscopy system will be developed to enhance the selectivity and sensitivity of Raman spectroscopy to simple organic molecules that may serve as food for or originate as waste from microbes in the vent ecosystem. Sensitivity enhancement will come from novel waveguide technology that has been demonstrated to push Raman detection limits to low ppb for simple alcohols. Finally, a fiber optic, single measurement excitation-emission matrix (EEM) fluorometer will be adapted to detect and characterize larger biomolecules such as amino acids, proteins, and DNA fragments that may prove indicative of biological activity in the vent ecosystem Each of the proposed sensors has been previously developed past the proof of concept stage for environmental or industrial process monitoring. The project will adapt and test the sensors for the more challenging application of deep sea vent monitoring. The sensors represent a promising technology that fills a large need in the oceanographic/ life in extreme environments community. If the proposed NEPTUNE network of deep-sea research nodes were built, these sensors would be ideal for long-term field deployment. Successful development of these sensors would lead to expansion of the technology for other biological and environmental process monitoring applications.
[摘要]热液喷口系统现场监测的智能传感器。项目提交日期:2001年6月27日项目负责人:Booksh机构:亚利桑那州立大学本项目由环境生物复杂性项目、环境活动仪器开发子项目(BE-IDEA)支持。该项目的目标是开发一套5个传感器,用于对深海热液喷口内及其周围的生态系统进行原位分析。这个生态系统可能是地球上最古老的生态系统之一,对全球地球化学循环产生了长期影响,但它是最不为人所知的生态系统之一。热液喷口生态系统处于不平衡的湍流状态,热能和化学能梯度较大。沿着这个热/化学梯度,一个由管蠕虫、嗜热微生物、特殊适应的甲壳类动物和鱼类组成的复杂生态系统得以生存。我们选择了最能监测喷口生态系统的物理、化学和生物环境的传感器,以更好地了解这种独特环境与它所支持的生命之间的相互关系。原位化学传感器的发展将使热液喷口监测技术取得重大进展。我们将采用基于光纤表面等离子体共振(SPR)的传感器,集成热电偶和电导率传感器,以更好地测量热液喷口流体的密度和喷口周围海水的盐度。光纤SPR传感器可以做得足够小和敏感,以探测喷口流体/海水梯度,其中许多嗜热微生物居住。利用光纤耦合光栅光反射光谱(GLRS)传感器监测喷口流体与海水混合过程中形成的矿物沉淀物的大小分布和相对丰度。这种沉淀物形成了大多数微生物居住的排气烟囱壁。将测试光纤拉曼光谱探针,以检测可能在喷口流体中形成生物或非生物的微量有机分子。还将测试拉曼光谱,以调查火山口壁上的矿物和微生物分布。将开发一种环境压力驱动的液相色谱-拉曼光谱系统,以提高拉曼光谱对简单有机分子的选择性和灵敏度,这些有机分子可能作为食物或起源于喷口生态系统中微生物的废物。灵敏度的提高将来自新型波导技术,该技术已被证明可以将简单醇的拉曼检测极限推至低ppb。最后,一种光纤、单测量激发发射矩阵(EEM)荧光计将被用于检测和表征较大的生物分子,如氨基酸、蛋白质和DNA片段,这些生物分子可能证明在喷口生态系统中具有生物活性。每一个拟议的传感器都已经过了环境或工业过程监测的概念验证阶段。该项目将对传感器进行调整和测试,以适应更具挑战性的深海喷口监测应用。传感器代表了一项有前途的技术,满足了海洋学/极端环境下生命社区的巨大需求。如果拟议的深海研究节点海王星网络建成,这些传感器将是长期现场部署的理想选择。这些传感器的成功开发将导致技术扩展到其他生物和环境过程监测应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Booksh其他文献
Karl Booksh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Booksh', 18)}}的其他基金
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003839 - 财政年份:2020
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Scientific Discovery from Chemical Data Analyses
化学数据分析的科学发现
- 批准号:
2011061 - 财政年份:2020
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
MRI: Acquisition of a Atomic Force Microscope (AFM)-Raman Microscope
MRI:购买原子力显微镜 (AFM)-拉曼显微镜
- 批准号:
1828325 - 财政年份:2018
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
REU Site: Chemical Sciences Leadership Initiative (CSLI)
REU 网站:化学科学领导力倡议 (CSLI)
- 批准号:
1560325 - 财政年份:2016
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
REU Site: Chemical Science Leadership Initiative (CSLI)
REU 网站:化学科学领导力倡议 (CSLI)
- 批准号:
1263018 - 财政年份:2013
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Collaborative Research: Surface Plasmon Resonance in the Mid-infrared
合作研究:中红外表面等离子共振
- 批准号:
1111618 - 财政年份:2011
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
SGER: Single Nanoparticle Surface Plasmon Resonance Imaging
SGER:单纳米粒子表面等离子共振成像
- 批准号:
0918189 - 财政年份:2009
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Mixed Electronic and Optical Computing Platforms for Portable Surface Plasmon Resonance Sensors
用于便携式表面等离子共振传感器的混合电子和光学计算平台
- 批准号:
0086947 - 财政年份:2000
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Workshop to Revise 'Teaching Chemistry to Students with Disabilities'
修订“残疾学生化学教学”研讨会
- 批准号:
0079057 - 财政年份:2000
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
CAREER: In-situ Determination of Pesticides and Other Environmental Pollutants with a Fiber Optic, Surface Resonance Based Sensor
职业:使用基于光纤、表面共振的传感器对农药和其他环境污染物进行原位测定
- 批准号:
9702476 - 财政年份:1997
- 资助金额:
$ 240.17万 - 项目类别:
Continuing Grant
相似海外基金
Low-cost electrochemical sensors derived from food waste for sensitive in-situ detection of water contaminants
来自食物垃圾的低成本电化学传感器,用于水污染物的灵敏原位检测
- 批准号:
2890356 - 财政年份:2023
- 资助金额:
$ 240.17万 - 项目类别:
Studentship
Integrated Ultrasonic Sensors for In-Situ Stent, Graft, or Stent-Graft Patency Monitoring
用于原位支架、移植物或支架移植物通畅监测的集成超声波传感器
- 批准号:
2885961 - 财政年份:2023
- 资助金额:
$ 240.17万 - 项目类别:
Studentship
NOISES - Nitrous Oxide In-Situ Environmental Sensors
噪音 - 一氧化二氮原位环境传感器
- 批准号:
BB/X003426/1 - 财政年份:2023
- 资助金额:
$ 240.17万 - 项目类别:
Research Grant
EAGER: Nanoplasmonic Mesh SERS Sensors for in situ Spatiotemporal Monitoring of Biofilm Activities
EAGER:用于生物膜活动原位时空监测的纳米等离子体网格 SERS 传感器
- 批准号:
2231807 - 财政年份:2022
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Field spectroradiometer suite for in-situ characterization of plants, soils and peats, and calibration of optical sensors and satellite observations
现场光谱辐射计套件,用于植物、土壤和泥炭的原位表征以及光学传感器和卫星观测的校准
- 批准号:
RTI-2023-00084 - 财政年份:2022
- 资助金额:
$ 240.17万 - 项目类别:
Research Tools and Instruments
Developing and deploying new sensors for in-situ monitoring of clouds
开发和部署用于云现场监测的新传感器
- 批准号:
2736850 - 财政年份:2022
- 资助金额:
$ 240.17万 - 项目类别:
Studentship
Collaborative Research: MSA: Uncovering local and regional controls on organic matter processing in freshwaters using in situ optical sensors
合作研究:MSA:利用原位光学传感器揭示淡水中有机物处理的地方和区域控制
- 批准号:
2106111 - 财政年份:2021
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
Viewing Chemistry through Diamond: Quantum Sensors for Realtime in situ NMR
通过钻石观察化学:用于实时原位 NMR 的量子传感器
- 批准号:
DE200101785 - 财政年份:2021
- 资助金额:
$ 240.17万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: MSA: Uncovering local and regional controls on organic matter processing in freshwaters using in situ optical sensors
合作研究:MSA:利用原位光学传感器揭示淡水中有机物处理的地方和区域控制
- 批准号:
2106112 - 财政年份:2021
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant
SBIR Phase I: Scaling Ocean Observation with Millions of In Situ Sensors
SBIR 第一阶段:利用数百万个原位传感器扩展海洋观测
- 批准号:
2014968 - 财政年份:2020
- 资助金额:
$ 240.17万 - 项目类别:
Standard Grant