Nanooptics with Plasmonic-Nanomaterials
纳米光学与等离子体纳米材料
基本信息
- 批准号:0121814
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-12-01 至 2005-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, optical properties of nanomaterials with different structures will be theoretically studied. The fundamental problem to address is how the symmetry of a nanostructured material influences its optical properties and, related to this, what geometrical structure should be chosen for best performance of the material. We specifically focus on metal-dielectric crystals and composites that can support various plasmon modes, resulting in strongly enhanced optical responses. In our research we particularly consider local optical phenomena that occur in sub-wavelength, nanometer-sized areas of the material.We plan to study photonic crystals made of periodically structured metal, which we refer to as i) plasmonic crystals. The goal here is to develop robust band-gap materials, with large and scaleable gaps in the visible and near-infrared. Because of large and negative permittivity of metals, they are intrinsically gap materials and can dramatically improve performance of photonic band-gap crystals and ease their fabrication. By employing the skin effect that expels light from metal, losses can be dramatically decreased, which is a major foe for metals. By taking control of losses we hope to open new avenues for various applications of plasmonic crystals in photonics.By combining plasmonic crystals with submicron-sized resonators made of nearly percolating composites, we will develop ii) left-handed materials in the visible and near-IR, which have a negative refractive index in this spectral range. The plasmonic mesh-like crystals, in this case, can provide negative permittivity, whereas the composite resonators lead to negative permeability. Such material with simultaneously negative permittivity and permeability should have negative refraction. Another possibility for developing left-handed materials, which we also plan to explore, is based on periodical arrays of metal needles. The left-handed materials have unique optical properties and can find a number of novel applications, for example for developing super-lenses, which are capable of perfect image reconstruction.In these projects we also plan to study iii) light-managed extraordinary optical transmittance through an optically-thick metal film. This new idea stems from our recent theory that has successfully explained the earlier observed extraordinary transmittance through subwavelength hole arrays. Because of the optical Kerr nonlinearity of a film, the interfering light beams can result in a periodic modulation of the refractive index in the film. This modulation can act as a periodic "hole array," created by light itself, allowing the extraordinary light transmittance through the film. This idea, when developed into a theory, can open new avenues for manipulating light with light and for developing all-optical transistors, switchers, and modulators.%%%In this project, optical properties of nanomaterials with different structures will be theoretically studied. The fundamental problem to address is how the symmetry of a nanostructured material influences its optical properties and, related to this, what geometrical structure should be chosen for best performance of the material. We specifically focus on metal-dielectric crystals and composites that can support various plasmon modes, resulting in strongly enhanced optical responses. In our research we particularly consider local optical phenomena that occur in sub-wavelength, nanometer-sized areas of the material.***
本项目将从理论上研究不同结构纳米材料的光学性质。要解决的基本问题是纳米结构材料的对称性如何影响其光学特性,以及与此相关的,应该选择什么样的几何结构以获得材料的最佳性能。我们特别关注金属介电晶体和复合材料,可以支持各种等离子体模式,从而大大增强光学响应。在我们的研究中,我们特别考虑了发生在亚波长,纳米尺寸的材料区域的局部光学现象。我们计划研究由周期性结构金属制成的光子晶体,我们称之为i)等离子体晶体。这里的目标是开发鲁棒的带隙材料,在可见光和近红外区域具有大且可扩展的带隙。由于金属材料的介电常数大且为负,因此金属材料本身就是带隙材料,可以极大地改善光子带隙晶体的性能并简化其制备。通过采用从金属中驱逐光的趋肤效应,可以显著减少损失,这是金属的主要敌人。通过控制损耗,我们希望为等离子体晶体在光子学中的各种应用开辟新的途径。通过将等离子体晶体与由近红外复合材料制成的亚微米尺寸的谐振器相结合,我们将开发ii)可见光和近红外的左手材料,这些材料在该光谱范围内具有负折射率。在这种情况下,等离子体网状晶体可以提供负介电常数,而复合谐振器导致负磁导率。这种同时具有负介电常数和负磁导率的材料应该具有负折射率。开发左手材料的另一种可能性,我们也计划探索,是基于金属针的周期性阵列。左手材料具有独特的光学性质,可以找到许多新的应用,例如开发能够完美重建图像的超级透镜。在这些项目中,我们还计划研究iii)通过光学厚金属膜的光管理非凡光学透射率。这个新的想法源于我们最近的理论,该理论成功地解释了早期观察到的通过亚波长孔阵列的非凡透射率。由于薄膜的光学克尔非线性,干涉光束可以导致薄膜中折射率的周期性调制。这种调制可以作为一个周期性的“孔阵列”,由光本身产生,允许非凡的光透过薄膜。这个想法,当发展成一个理论,可以打开新的途径操纵光与光和发展全光学晶体管,开关,和调制器。本项目将从理论上研究不同结构纳米材料的光学性质。要解决的基本问题是纳米结构材料的对称性如何影响其光学性质,以及与此相关的,应该选择什么样的几何结构以获得材料的最佳性能。我们特别关注金属介电晶体和复合材料,可以支持各种等离子体模式,从而大大增强光学响应。在我们的研究中,我们特别考虑了在亚波长,纳米尺寸的材料区域中发生的局部光学现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Shalaev其他文献
Vladimir Shalaev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Shalaev', 18)}}的其他基金
MetaQuantum: Hybrid Plasmonic-Photonic Meta-Structures for Quantum Information Systems
MetaQuantum:量子信息系统的混合等离子体光子元结构
- 批准号:
2015025 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
SGER: Fractal Surface Enhanced Chemical & Biological Sensors
SGER:分形表面增强化学
- 批准号:
0227473 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NIRT: Plasmonic Nanophotonics and Optoelectronics
NIRT:等离子体纳米光子学和光电子学
- 批准号:
0210445 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Nonlinear Near-Field Optics of Fractal Thin Films
分形薄膜的非线性近场光学
- 批准号:
9810183 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
- 批准号:22304162
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
- 批准号:22004002
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
- 批准号:21605057
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
- 批准号:11604227
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
- 批准号:21475125
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
- 批准号:21175125
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Anisotropic plasmonic nanomaterials
各向异性等离子体纳米材料
- 批准号:
RGPIN-2018-05309 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Sustainable Nanoparticles: Plasmonic Photocatalysis and Solid-State Synthesis of Nanomaterials
可持续纳米粒子:等离子体光催化和纳米材料的固态合成
- 批准号:
RGPIN-2018-05806 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Synthesis and Characterization of Plasmonic Metal Nitride Nanomaterials
等离激元金属氮化物纳米材料的合成与表征
- 批准号:
534524-2019 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Anisotropic plasmonic nanomaterials
各向异性等离子体纳米材料
- 批准号:
RGPIN-2018-05309 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Sustainable Nanoparticles: Plasmonic Photocatalysis and Solid-State Synthesis of Nanomaterials
可持续纳米粒子:等离子体光催化和纳米材料的固态合成
- 批准号:
RGPIN-2018-05806 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Anisotropic plasmonic nanomaterials
各向异性等离子体纳米材料
- 批准号:
RGPIN-2018-05309 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Synthesis and Characterization of Plasmonic Metal Nitride Nanomaterials
等离激元金属氮化物纳米材料的合成与表征
- 批准号:
534524-2019 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Sustainable Nanoparticles: Plasmonic Photocatalysis and Solid-State Synthesis of Nanomaterials
可持续纳米粒子:等离子体光催化和纳米材料的固态合成
- 批准号:
RGPIN-2018-05806 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual