MetaQuantum: Hybrid Plasmonic-Photonic Meta-Structures for Quantum Information Systems

MetaQuantum:量子信息系统的混合等离子体光子元结构

基本信息

  • 批准号:
    2015025
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Photons, which are quantum particles of light, are one of the most promising platforms for the emerging quantum information science and technology (QIST) applications including quantum communication, computing and sensing. As photons travel long distances without inference and at the ultimate speed, the field of quantum photonics seeks to enable quantum devices for QIST using photons. The goal of this project is to produce quantum photonic structures and devices that can be integrated on a chip for future applications in quantum computing and communication links. As part of the effort, we will address several challenges, such as the fact that quantum states are hard to preserve, particularly at room temperatures, and that quantum systems can be limited in speed due to photons loss, that is absorption. We aim to overcome these limitations by developing meta-devices, which are nanoscale structures utilizing metallic thin films and so-called plasmonic nanoparticles that can uniquely enhance emission from quantum light sources. We will also explore the realization of hybrid devices that incorporate both meta-structures and conventional optical components. We will employ machine learning algorithms to aid in advance structure designs and quantum measurements. Due to unique properties of photons as quantum information carriers, namely weak interaction with matter and propagation at the speed of light, quantum photonics has emerged as one of the most promising enabling approaches for quantum information science and technology (QIST) platforms. The goal of the project is to overcome fundamental limitations that conventional quantum nanophotonic structures are facing, which include slow operation, optical loss, and fast decoherence rates in matter at room temperature. This effort will address the critical need to develop efficient, low loss, ultra-fast (THz rates) and compact on-chip quantum photonic devices by investigating both theoretically and experimentally strongly enhanced, highly controllable light-matter interactions in the quantum regime in nanometer-scale plasmonic (metal-based) structures and metamaterials. This project will merge nanoplasmonics with artificial-intelligence (AI) to realize hybrid plasmonic-photonic meta-structures for room-temperature quantum systems that can operate at THz speeds and offer a small footprint and unprecedented functionality. The program objectives are to create a fundamentally new framework for realization of advanced photonic QIST components via (1) theoretical studies of quantum emitters coupled to plasmonic meta-structures; (2) demonstration of plasmonic speed-up of quantum processes and exploration of hybrid meta-structures, including single-photon sources, deterministic multi-photon gates and quantum frequency converters; and (3) development of AI-assisted design, integration and characterization of quantum devices. This program will advance the emerging QIST technologies and expected to generate a significant industry interest in the fields of quantum information and quantum sensors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子是光的量子粒子,是量子通信、计算和传感等新兴量子信息科学与技术应用的最有前途的平台之一。由于光子在没有干扰的情况下以极限速度长距离行进,因此量子光子学领域寻求使量子设备能够使用光子进行QIST。该项目的目标是生产可以集成在芯片上的量子光子结构和器件,用于未来量子计算和通信链路的应用。作为努力的一部分,我们将解决几个挑战,例如量子态很难保持,特别是在室温下,量子系统的速度可能会由于光子损失而受到限制,即吸收。我们的目标是通过开发元器件来克服这些限制,元器件是利用金属薄膜和所谓的等离子体纳米颗粒的纳米级结构,可以独特地增强量子光源的发射。我们还将探讨实现混合设备,将元结构和传统的光学元件。我们将采用机器学习算法来帮助进行先进的结构设计和量子测量。 由于光子作为量子信息载体的独特性质,即与物质的弱相互作用和以光速传播,量子光子学已成为量子信息科学与技术(QIST)平台最有前途的实现方法之一。该项目的目标是克服传统量子纳米光子结构面临的基本限制,包括室温下物质的缓慢操作,光学损耗和快速退相干速率。这项工作将解决开发高效,低损耗,超快(THz速率)和紧凑的片上量子光子器件的关键需求,通过研究理论和实验上强烈增强,高度可控的光-物质相互作用在纳米级等离子体(金属基)结构和超材料的量子机制。该项目将纳米等离子体与人工智能(AI)相结合,为室温量子系统实现混合等离子体-光子元结构,该系统可以以太赫兹速度运行,并提供小的占地面积和前所未有的功能。该计划的目标是创建一个全新的框架,实现先进的光子QIST组件,通过(1)量子发射器耦合到等离子体元结构的理论研究;(2)量子过程的等离子体加速的演示和混合元结构的探索,包括单光子源,确定性多光子门和量子频率转换器;以及(3)开发量子器件的AI辅助设计、集成和表征。该计划将推动新兴的QIST技术,并有望在量子信息和量子传感器领域产生重大的行业兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum meta-photonics
  • DOI:
    10.1117/12.2657528
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Senichev;Xiaohui Xu;Zachariah O. Martin;Samuel Peana;O. Yesilyurt;Demid V. Sychev;A. Lagutchev;A. Boltasseva;V. Shalaev
  • 通讯作者:
    Alexander Senichev;Xiaohui Xu;Zachariah O. Martin;Samuel Peana;O. Yesilyurt;Demid V. Sychev;A. Lagutchev;A. Boltasseva;V. Shalaev
Enhancing Quantum Emission from Spin Defects in Hexagonal Boron Nitride with a Plasmonic Nanocavity
利用等离子体纳米腔增强六方氮化硼中自旋缺陷的量子发射
Silicon Nitride Waveguides with Intrinsic Single-Photon Emitters for Integrated Quantum Photonics
  • DOI:
    10.1021/acsphotonics.2c00750
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Alexander Senichev;Samuel Peana;Zachariah O. Martin;O. Yesilyurt;Demid V. Sychev;A. Lagutchev;A. Boltasseva;V. Shalaev
  • 通讯作者:
    Alexander Senichev;Samuel Peana;Zachariah O. Martin;O. Yesilyurt;Demid V. Sychev;A. Lagutchev;A. Boltasseva;V. Shalaev
Single-Photon Emitters in Aluminum Nitride by Zr ion Implantation
  • DOI:
    10.1364/cleo_fs.2023.ftu3c.2
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Senichev;Zachariah O. Martin;Yongqiang Wang;H. Htoon;A. Lagutchev;A. Boltasseva;V. Shalaev
  • 通讯作者:
    Alexander Senichev;Zachariah O. Martin;Yongqiang Wang;H. Htoon;A. Lagutchev;A. Boltasseva;V. Shalaev
Large Scale Site-Controlled Fabrication of Single Photon Emitters in Silicon Nitride Nanopillars
氮化硅纳米柱中单光子发射器的大规模现场控制制造
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Shalaev其他文献

Vladimir Shalaev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Shalaev', 18)}}的其他基金

SGER: Fractal Surface Enhanced Chemical & Biological Sensors
SGER:分形表面增强化学
  • 批准号:
    0227473
  • 财政年份:
    2002
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
NIRT: Plasmonic Nanophotonics and Optoelectronics
NIRT:等离子体纳米光子学和光电子学
  • 批准号:
    0210445
  • 财政年份:
    2002
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Nanooptics with Plasmonic-Nanomaterials
纳米光学与等离子体纳米材料
  • 批准号:
    0121814
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Nonlinear Near-Field Optics of Fractal Thin Films
分形薄膜的非线性近场光学
  • 批准号:
    9810183
  • 财政年份:
    1998
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Near-Field Optics of Fractals
分形近场光学
  • 批准号:
    9500258
  • 财政年份:
    1995
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
  • 批准号:
    20Y11910600
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
  • 批准号:
    11875146
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
  • 批准号:
    81770777
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
  • 批准号:
    81601499
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
  • 批准号:
    51505048
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
  • 批准号:
    61572084
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
  • 批准号:
    51509075
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Hybrid加速结构的理论及预制研究
  • 批准号:
    11475201
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
  • 批准号:
    41205073
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
  • 批准号:
    51205392
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
  • 批准号:
    2349887
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
  • 批准号:
    2304910
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
DYnamic control in hybrid plasmonic NAnopores: road to next generation multiplexed single MOlecule detection
混合等离子体纳米孔的动态控制:下一代多重单分子检测之路
  • 批准号:
    EP/X038009/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Achieving a tunable hybrid plasmonic-semiconductor laser incorporating epsilon-near-zero materials
实现结合ε近零材料的可调谐混合等离子体半导体激光器
  • 批准号:
    569945-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
  • 批准号:
    2102239
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
  • 批准号:
    2102238
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Chiral catalysis with hybrid plasmonic nanoparticles
混合等离子体纳米粒子的手性催化
  • 批准号:
    453211202
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    WBP Position
Excellence in Research: Processes and Interactions in Hybrid Plasmonic Systems
卓越的研究:混合等离子体系统的过程和相互作用
  • 批准号:
    2000170
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Infrared hybrid and plasmonic silicon photonic circuits
红外混合和等离子体硅光子电路
  • 批准号:
    2448444
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Chiral catalysis with hybrid plasmonic nanoparticles
混合等离子体纳米粒子的手性催化
  • 批准号:
    453211118
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了