CAREER: Optimal Control of Quantum Systems

职业:量子系统的最优控制

基本信息

  • 批准号:
    0133673
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

0133673KhanejaOver the past fifty years, there has been a steady increase in man's ability to manipulate and control quantum mechanical phenomena. Today we are surrounded with technology that owes its existence directly or indirectly to quantum mechanical effects. From transistors, lasers, compact disc players, optical fibre communications, magnetic resonance imaging to scanning tunneling microscopes, the quantum technology has effected every aspect of our life. These days the quantum technologists can trap and experiment with individual atoms, bounce atoms up and down on carefully sculpted electromagnetic fields, and image the structure of a crystal, atom by atom. Emergence of the science of quantum information in the last decade has added a new dimension to the applications of control of quantum mechanical phenomena. There is now an increasing emphasis on harnessing quantum dynamics for the purposes of computing, communication, and information storage. All these technologies involve exercising control over quantum mechanical phenomena. A central challenge in the control of quantum dynamics is the loss of coherence (decoherence) in system dynamics, due to unwanted couplings to the environment. This issue of decoherence arises in almost all potential implementations of quantum information devices and control of quantum systems in general. In this project the PI will develop methods inspired by geometric control theory for optimal control of quantum systems. He will compute fundamental bounds on the minimum time it takes to produce a desired evolution in a quantum system and design time optimal control laws which achieve these bounds. These geometric control ideas will be applied to design of time optimal pulse sequences for coherence transfer experiments in high resolution liquid state nuclear magnetic resonance (NMR) spectroscopy, with applications to structural biology and NMR quantum computing. Minimization of time is important as it reduces the effects of decoherence and increases the sensitivity of experiments in NMR spectroscopy. There is a great need for such work in the growing field of structural biology, because time optimal pulse sequences will significantly reduce the spectrometer time (by days in some experiments) leading the way to high-throughput determination of protein structures. Time optimal pulses will also help to scale NMR methods for processing of larger proteins by minimizing decoherence effects. This effort is broad in its scope and applicable to a wide variety of applications involving control of quantum systems.
0133673Khaneja在过去的五十年里,人类操纵和控制量子力学现象的能力稳步提高。今天,我们被技术所包围,这些技术的存在直接或间接地归功于量子力学效应。从晶体管、激光器、光盘播放器、光纤通信、磁共振成像到扫描隧道显微镜,量子技术已经影响了我们生活的方方面面。如今,量子技术专家可以捕获单个原子并进行实验,在精心塑造的电磁场上上下弹跳原子,并逐个原子地成像晶体的结构。近十年来,量子信息科学的出现为量子力学现象的控制应用增加了一个新的维度。现在人们越来越重视利用量子动力学进行计算,通信和信息存储。 所有这些技术都涉及对量子力学现象的控制。 控制量子动力学的一个核心挑战是系统动力学中的相干性损失(退相干),这是由于与环境的不必要的耦合。 退相干的这个问题出现在几乎所有可能的量子信息设备和量子系统控制的实现中。在这个项目中,PI将开发受几何控制理论启发的量子系统最优控制方法。 他将计算在量子系统中产生所需演化所需的最短时间的基本界限,并设计实现这些界限的时间最优控制律。这些几何控制的想法将被应用到设计的时间最佳脉冲序列的相干转移实验在高分辨率液态核磁共振(NMR)光谱,结构生物学和NMR量子计算的应用。时间的最小化是重要的,因为它减少了退相干的影响,并增加了NMR光谱实验的灵敏度。在不断发展的结构生物学领域中,非常需要这样的工作,因为时间最优的脉冲序列将显着减少光谱仪的时间(在某些实验中为几天),从而实现蛋白质结构的高通量测定。时间最佳脉冲也将有助于通过最小化退相干效应来缩放NMR方法以用于处理较大的蛋白质。这项工作的范围很广,适用于涉及量子系统控制的各种应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Navin Khaneja其他文献

Robust and efficient <sup>19</sup>F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation
  • DOI:
    10.1016/j.jmr.2012.11.003
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joachim M. Vinther;Navin Khaneja;Niels Chr. Nielsen
  • 通讯作者:
    Niels Chr. Nielsen
Time optimal control of coupled spin dynamics: A global analysis
  • DOI:
    10.1016/j.automatica.2019.108639
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Navin Khaneja
  • 通讯作者:
    Navin Khaneja
Band Selective Excitation and $$\frac{\pi }{2}$$ -Rotation using Fourier Synthesis
  • DOI:
    10.1007/s00723-023-01547-6
  • 发表时间:
    2023-05-20
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Sambeda Sarkar;Navin Khaneja
  • 通讯作者:
    Navin Khaneja

Navin Khaneja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Navin Khaneja', 18)}}的其他基金

Novel Methods for High Resolution NMR Spectroscopy in Inhomogeneous Fields
非均匀场高分辨率核磁共振波谱的新方法
  • 批准号:
    0724057
  • 财政年份:
    2007
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Workshop Proposal: Control of Quantum Systems Conference, Harvard University; August 7-12, 2006
研讨会提案:量子系统控制会议,哈佛大学;
  • 批准号:
    0640105
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Time Optimal Control of Quantum Information Processing Systems
量子信息处理系统的时间最优控制
  • 批准号:
    0218411
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Constrained Optimal Control of Partial Differential Equations for Improving Energy Utilization in Transportation and in the Built Environment
职业:偏微分方程的约束最优控制,以提高交通和建筑环境中的能源利用率
  • 批准号:
    2042354
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Optimal Control of Energy Systems via Structured Neural Networks: A Convex Approach
职业:通过结构化神经网络优化能源系统控制:凸方法
  • 批准号:
    1942326
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: A Flexible Optimal Control Framework for Efficient Training of Deep Neural Networks
职业生涯:用于高效训练深度神经网络的灵活最优控制框架
  • 批准号:
    1751636
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Control of Encapsulated Ultrasound Microbubbles for Biomedicine
职业:生物医学封装超声微泡的最佳控制
  • 批准号:
    1653992
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: A "first-principles" approach to the smart electric grid: fundamental limits and optimal control algorithms
职业:智能电网的“第一原理”方法:基本限制和最优控制算法
  • 批准号:
    1150801
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Interactive Physically Based Animation and Optimal Control Using Model Reduction
职业:基于物理的交互式动画和使用模型缩减的最优控制
  • 批准号:
    1055035
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
  • 批准号:
    0955463
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Optimal Co-Design of Control and Communication Protocols in Cyber-physical Systems
职业:网络物理系统中控制和通信协议的可扩展和优化协同设计
  • 批准号:
    0846631
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Unified Optimal Control and Estimation of Nonlinear Dynamic Systems with Closed-Form Solutions
职业:具有闭式解的非线性动态系统的统一最优控制和估计
  • 批准号:
    0846877
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Light-weight Near-optimal Stochastic Control Policies for Information Acquisition and Exploitation
职业:用于信息获取和利用的轻量级近最优随机控制策略
  • 批准号:
    0745761
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了