Time Optimal Control of Quantum Information Processing Systems
量子信息处理系统的时间最优控制
基本信息
- 批准号:0218411
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EIA-0218441Navin KhanejaHarvard UniversityTime Optimal Control of Quantum Information Processing SystemsTime optimal control of quantum mechanical systems can significantly minimize decoherence effects in coherent manipulation of quantum pheonomenon. The central theme of the project is to develop a mathematical theory for optimal unitary control of quantum networks. Network of coupled two level quantum systems form the benchmark for a quantum computer. Finding the minimum time it takes to produce a desired unitary evolution in a network of coupled quantum systems is of fundamental practical importance not just in the field of quantum information processing but the whole field of coherent spectroscopy. In particular, focus is on optimal control of network of coupled spin half particles (acting as qubits in liquid and solid state NMR quantum conputing with fixed interaction Hamiltonian and ability to selectively excite some of the qubits. One of the goals of this project is to develop geometric methods for computing fundamental bounds on the minimum time it takes to produce unitary evolution in a network of coupled quantum systems and find time optimal control laws which achieve these bounds. These methods are based on variational ideas as captured by the theory of optimal control. Finding optimal strategies to control the dynamics of quantum networks can be reduced to problems in Riemannian geometry of computing subriemannian geodesics in certain homogeneous spaces. Using these geometric techniques time optimal control strategies for quantum networks are being computed.
量子信息处理系统的时间最优控制量子力学系统的时间最优控制可以显著地减小相干操纵量子现象中的退相干效应。该项目的中心主题是开发量子网络最优酉控制的数学理论。耦合两能级量子系统的网络形成量子计算机的基准。找到在耦合量子系统网络中产生期望的幺正演化所需的最小时间不仅在量子信息处理领域而且在整个相干光谱学领域都具有根本的实际重要性。特别是,重点是耦合自旋半粒子网络的最佳控制(在液体和固体NMR量子计算中充当量子位,具有固定的相互作用哈密顿量和选择性激发某些量子位的能力)。该项目的目标之一是开发几何方法,用于计算耦合量子系统网络中产生幺正演化所需的最小时间的基本界限,并找到实现这些界限的时间最优控制律。这些方法是基于变分的想法,捕捉到的最优控制理论。寻找控制量子网络动力学的最佳策略可以归结为黎曼几何中计算某些齐性空间中的次黎曼测地线的问题。使用这些几何技术正在计算量子网络的时间最优控制策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Navin Khaneja其他文献
Robust and efficient <sup>19</sup>F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation
- DOI:
10.1016/j.jmr.2012.11.003 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:
- 作者:
Joachim M. Vinther;Navin Khaneja;Niels Chr. Nielsen - 通讯作者:
Niels Chr. Nielsen
Time optimal control of coupled spin dynamics: A global analysis
- DOI:
10.1016/j.automatica.2019.108639 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Navin Khaneja - 通讯作者:
Navin Khaneja
Band Selective Excitation and $$\frac{\pi }{2}$$ -Rotation using Fourier Synthesis
- DOI:
10.1007/s00723-023-01547-6 - 发表时间:
2023-05-20 - 期刊:
- 影响因子:1.100
- 作者:
Sambeda Sarkar;Navin Khaneja - 通讯作者:
Navin Khaneja
Navin Khaneja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Navin Khaneja', 18)}}的其他基金
Novel Methods for High Resolution NMR Spectroscopy in Inhomogeneous Fields
非均匀场高分辨率核磁共振波谱的新方法
- 批准号:
0724057 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Workshop Proposal: Control of Quantum Systems Conference, Harvard University; August 7-12, 2006
研讨会提案:量子系统控制会议,哈佛大学;
- 批准号:
0640105 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Optimal Control of Quantum Systems
职业:量子系统的最优控制
- 批准号:
0133673 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling, Optimization and Real-time Optimal Control of Hybrid Electric Vehicles and Marine Vessels
混合动力电动汽车和船舶的建模、优化和实时优化控制
- 批准号:
RGPIN-2017-06219 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Optimization and Real-time Optimal Control of Hybrid Electric Vehicles and Marine Vessels
混合动力电动汽车和船舶的建模、优化和实时优化控制
- 批准号:
RGPIN-2017-06219 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Asymmetric Gait Generation for Legged Locomotion in Complex Environments via Off-Line Model Reduction and Real-Time Optimal Control
通过离线模型简化和实时最优控制,生成复杂环境中腿部运动的不对称步态
- 批准号:
2128568 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Robots Teaching Robots: Real-time Optimal Control of Complex Engineering Systems
机器人教学机器人:复杂工程系统的实时优化控制
- 批准号:
2029181 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling, Optimization and Real-time Optimal Control of Hybrid Electric Vehicles and Marine Vessels
混合动力电动汽车和船舶的建模、优化和实时优化控制
- 批准号:
RGPIN-2017-06219 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Optimization and Real-time Optimal Control of Hybrid Electric Vehicles and Marine Vessels
混合动力电动汽车和船舶的建模、优化和实时优化控制
- 批准号:
RGPIN-2017-06219 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Efficient Algorithms for Optimal Control of Time-Periodic and Nonlinear Systems
时间周期和非线性系统最优控制的高效算法
- 批准号:
1819110 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
- 批准号:
1812921 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Real-Time: Learning-based Optimal Control of Stochastic Nonlinear Systems
EAGER:实时:随机非线性系统的基于学习的最优控制
- 批准号:
1839527 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant