Algebraic and Stochastic Models of Structures Arising in Utility Theory and Psychophysics

效用理论和心理物理学中出现的结构的代数和随机模型

基本信息

  • 批准号:
    0136431
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-03-15 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

This research continues and extends earlier theoretical work of the investigator and of collaborator A. A. J. Marley on the measurement of psychological attributes such as the utility of goods and the subjective intensity of physical signals such as lights or sounds. The research will describe the underlying structure of independent variables that affect the attribute in such algebraic terms as (1) the ordering by "subjectively greater than," (2) operations like being presented with two goods or stimuli at once or in quick succession, (3) treatments of stimuli as deviations from the status quo in utility or from threshold in psychophysics, and (4) use of judgements of "ratios of intervals" similar to those found in magnitude production methods. This project will account for violations of dominance, such as the utility of gambling per se, peculiarities of mixed gambles of gains and losses, and various principles to extend the theory from binary gambles to general ones. The project also will attempt to generalize some of the algebraic theories to probabilistic versions.Utility models are extensively used in providing advice to decision makers and subjective expected utility also is a key part of Bayesian statistical methods. Sensory measurement is used widely in a variety of industrial settings. Yet these applications are based primarily on empirical generalizations whose theoretical basis has recently been brought into doubt. This project will advance theory and methods in many application areas. It also will further the development of a probabilistic version of fundamental measurement theory, thereby expanding the value of this approach for many social and behavioral science inquiries.
这项研究继续并扩展了研究者和合作者A.A.J.Marley关于测量心理属性的早期理论工作,如商品的效用和物理信号(如光或声音)的主观强度。这项研究将用代数术语描述影响属性的自变量的基本结构,如(1)通过“主观大于”的排序,(2)同时或快速连续地面对两个商品或刺激的操作,(3)在效用或心理物理学中将刺激作为偏离现状或阈值的处理,以及(4)使用类似于在量值产生方法中发现的“区间比率”的判断。这个项目将解释违反支配地位的行为,例如赌博本身的效用,收益和损失混合赌博的特殊性,以及将理论从二元赌博扩展到一般赌博的各种原则。该项目还将尝试将一些代数理论推广到概率版本。效用模型被广泛用于为决策者提供建议,主观期望效用也是贝叶斯统计方法的关键部分。感官测量广泛应用于各种工业环境中。然而,这些应用主要是基于经验总结,其理论基础最近受到了质疑。该项目将在多个应用领域推进理论和方法的发展。它还将进一步发展基本测量理论的概率版本,从而扩大这种方法对许多社会和行为科学调查的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

R. Duncan Luce其他文献

Individual magnitude estimates for various distributions of signal intensity
  • DOI:
    10.3758/bf03198675
  • 发表时间:
    1980-11-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    David M. Green;R. Duncan Luce;Albert F. Smith
  • 通讯作者:
    Albert F. Smith
Effects of practice and distribution of auditory signals on absolute identification
  • DOI:
    10.3758/bf03199683
  • 发表时间:
    1977-05-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Daniel L. Weber;David M. Green;R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce
Measurement structures with archimedean ordered translation groups
Several possible measures of risk
  • DOI:
    10.1007/bf00135033
  • 发表时间:
    1980-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce
Thurstone's discriminal processes fifty years later
  • DOI:
    10.1007/bf02295975
  • 发表时间:
    1977-12-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce

R. Duncan Luce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('R. Duncan Luce', 18)}}的其他基金

Empirical and Theoretical Studies of Psychophysical Phenomona
心理物理现象的实证和理论研究
  • 批准号:
    0720288
  • 财政年份:
    2007
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Algebraic and Stochastic Models of Structures Arising in Utility Theory and Psychophysics
效用理论和心理物理学中出现的结构的代数和随机模型
  • 批准号:
    0452756
  • 财政年份:
    2005
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Non-Additive Utility Theories for Uncertain Alterations Into Mixed Consequences
将不确定改变转化为混合后果的非相加效用理论
  • 批准号:
    9808057
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Workshop on Mathematical Psychology, Irvine, California, July 6-25, 1997
数学心理学研讨会,加州尔湾,1997 年 7 月 6-25 日
  • 批准号:
    9631931
  • 财政年份:
    1996
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Foundational Measurement Theory With Applications
基础测量理论及其应用
  • 批准号:
    9520107
  • 财政年份:
    1995
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research in Decision, Risk, and Management Science: Utility Theories with Joint Receipts and Reference Levels
决策、风险和管理科学的合作研究:具有联合收益和参考水平的效用理论
  • 批准号:
    9308959
  • 财政年份:
    1993
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Rank and Sign Dependent Linear Utility Theory: Theoretical Extensions, Empirical Tests, and Applied Relevance
秩和符号相关的线性效用理论:理论扩展、实证检验和应用相关性
  • 批准号:
    8921494
  • 财政年份:
    1990
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Research Training Group in Mathematical Behavioral Sciences
数学行为科学研究训练组
  • 批准号:
    9014278
  • 财政年份:
    1990
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Measurement: Axiomatic and Meaningfulness Studies (Information Science)
测量:公理化和意义研究(信息科学)
  • 批准号:
    8996149
  • 财政年份:
    1988
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Measurement: Axiomatic and Meaningfulness Studies (Information Science)
测量:公理化和意义研究(信息科学)
  • 批准号:
    8602765
  • 财政年份:
    1986
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Investigating evolution and complexity with stochastic models
使用随机模型研究演化和复杂性
  • 批准号:
    2889977
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
  • 批准号:
    2311162
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325185
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: Formal Analysis of Stochastic Models in Systems Biology Under Uncertainty
EAGER:不确定性下系统生物学随机模型的形式分析
  • 批准号:
    2227898
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Tools for the investigation of stochastic multiphysics models
用于研究随机多物理场模型的工具
  • 批准号:
    RGPIN-2020-04654
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了