Algebraic and Stochastic Models of Structures Arising in Utility Theory and Psychophysics

效用理论和心理物理学中出现的结构的代数和随机模型

基本信息

  • 批准号:
    0452756
  • 负责人:
  • 金额:
    $ 21.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

The research concerns the modeling of choices between, and judgments about, uncertain and risky options. It involves both algebraic modeling of a sort that has been actively studied for many years, but where important improvements are still possible, and probabilistic modeling to accommodate the somewhat inconsistent behavior apparent in such choices and judgments. Four of the algebraic problems are: (1) Provide a fundamental behavioral model (axiomatization) of the general linear weighted utility representation. Although many models are of this type, a general understanding of the behavioral properties that give rise to it still is lacking. For instance, a behavioral formulation of Birnbaum's Transfer of Attention Exchange model is needed. (2) Understand at a deeper level the assumption that two gambles are independently realized, which is often invoked in these theories. (3) Although often mentioned, little has been done to understand the utility or disutility of uncertainly itself. Following non-axiomatic work of Meginniss (1976) in the context of risk, the investigator in collaboration with others has been working on an axiomatization that yields a linear weighted utility plus a constant times a standard measure of entropy. This needs further clarification and development. (4) Develop more fully models of mixed gains and losses, which often are postponed in favor of the simpler cases of either all gains or all losses. Turning to probabilistic models, the investigators' approach is designed to supplement and improve the existing literature that focuses mainly on the random analogue of one-dimensional measurement. The crux of the problem is to deal with interlocked structures, such as gambles and their joint receipt, and, in particular, to gain what amounts to a random version of the (algebraic distribution) laws that interlock two structures. Attempts to resolve this type of problem have not been very satisfactory, except for the recent sophisticated axiomatization of a probabilistic version of expected utility.This research will impact the sciences, including economics, management science, psychology, and statistics, that examine individual decision making under uncertainty. Sensory psychophysicists also should benefit because the formal results of utility theory can be applied, sometimes with modifications, to the measurement of subjective intensity. The social importance of the developments in utility theory lies largely in the advice that is given by decision analysts to clients in areas such as investment and medicine. Up to now, such advice has typically been based on rational theories such as subjective expected utility. With a deeper understanding of the ways in which traditional theories have failed to capture people's goals, we can expect considerably improved advising.
这项研究涉及对不确定和有风险的选项之间的选择和判断的建模。它既包括一种已被积极研究多年但仍有可能进行重要改进的代数建模,也包括适应此类选择和判断中明显存在的某种不一致行为的概率建模。四个代数问题是:(1)提供一般线性加权效用表示的基本行为模型(公理化)。虽然许多模型都是这种类型的,但对导致这种类型的行为特性仍然缺乏普遍的理解。例如,需要对Birnbaum的注意转移交换模型进行行为表述。(2)更深层次地理解两次赌博是独立实现的假设,这是这些理论中经常引用的。(3)虽然经常被提及,但很少有人理解不确定性本身的用处或坏处。根据Meginniss(1976)在风险背景下的非公理工作,研究者与其他人合作一直致力于公理化,该公理产生线性加权效用加上常量乘以标准的熵度量。这需要进一步澄清和发展。(4)开发更全面的混合收益和亏损模型,这些模型通常会被推迟,以支持更简单的情况,要么全部收益,要么全部亏损。关于概率模型,研究人员的方法旨在补充和改进现有的文献,这些文献主要集中在一维测量的随机模拟上。问题的关键是处理相互关联的结构,如赌博及其联合收受,特别是获得相当于将两个结构相互关联的(代数分布)定律的随机版本。解决这类问题的尝试一直不是很令人满意,除了最近对预期效用的概率版本进行了复杂的公理化。这项研究将影响考察不确定情况下个人决策的科学,包括经济学、管理学、心理学和统计学。感官心理物理学家也应该受益,因为效用理论的正式结果可以应用于主观强度的测量,有时经过修改。效用理论发展的社会重要性在很大程度上在于决策分析师向投资和医药等领域的客户提供的建议。到目前为止,这类建议通常是基于主观预期效用等理性理论。随着对传统理论未能捕捉到人们目标的方式有了更深入的理解,我们可以预期会有相当大的改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

R. Duncan Luce其他文献

Individual magnitude estimates for various distributions of signal intensity
  • DOI:
    10.3758/bf03198675
  • 发表时间:
    1980-11-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    David M. Green;R. Duncan Luce;Albert F. Smith
  • 通讯作者:
    Albert F. Smith
Measurement structures with archimedean ordered translation groups
Effects of practice and distribution of auditory signals on absolute identification
  • DOI:
    10.3758/bf03199683
  • 发表时间:
    1977-05-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Daniel L. Weber;David M. Green;R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce
Thurstone's discriminal processes fifty years later
  • DOI:
    10.1007/bf02295975
  • 发表时间:
    1977-12-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce
Several possible measures of risk
  • DOI:
    10.1007/bf00135033
  • 发表时间:
    1980-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    R. Duncan Luce
  • 通讯作者:
    R. Duncan Luce

R. Duncan Luce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('R. Duncan Luce', 18)}}的其他基金

Empirical and Theoretical Studies of Psychophysical Phenomona
心理物理现象的实证和理论研究
  • 批准号:
    0720288
  • 财政年份:
    2007
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Algebraic and Stochastic Models of Structures Arising in Utility Theory and Psychophysics
效用理论和心理物理学中出现的结构的代数和随机模型
  • 批准号:
    0136431
  • 财政年份:
    2002
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Non-Additive Utility Theories for Uncertain Alterations Into Mixed Consequences
将不确定改变转化为混合后果的非相加效用理论
  • 批准号:
    9808057
  • 财政年份:
    1998
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Workshop on Mathematical Psychology, Irvine, California, July 6-25, 1997
数学心理学研讨会,加州尔湾,1997 年 7 月 6-25 日
  • 批准号:
    9631931
  • 财政年份:
    1996
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Foundational Measurement Theory With Applications
基础测量理论及其应用
  • 批准号:
    9520107
  • 财政年份:
    1995
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research in Decision, Risk, and Management Science: Utility Theories with Joint Receipts and Reference Levels
决策、风险和管理科学的合作研究:具有联合收益和参考水平的效用理论
  • 批准号:
    9308959
  • 财政年份:
    1993
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Rank and Sign Dependent Linear Utility Theory: Theoretical Extensions, Empirical Tests, and Applied Relevance
秩和符号相关的线性效用理论:理论扩展、实证检验和应用相关性
  • 批准号:
    8921494
  • 财政年份:
    1990
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Research Training Group in Mathematical Behavioral Sciences
数学行为科学研究训练组
  • 批准号:
    9014278
  • 财政年份:
    1990
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Measurement: Axiomatic and Meaningfulness Studies (Information Science)
测量:公理化和意义研究(信息科学)
  • 批准号:
    8996149
  • 财政年份:
    1988
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Measurement: Axiomatic and Meaningfulness Studies (Information Science)
测量:公理化和意义研究(信息科学)
  • 批准号:
    8602765
  • 财政年份:
    1986
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Studentship
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Investigating evolution and complexity with stochastic models
使用随机模型研究演化和复杂性
  • 批准号:
    2889977
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Studentship
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
  • 批准号:
    2311162
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325185
  • 财政年份:
    2023
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
  • 批准号:
    RGPIN-2018-04746
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: Formal Analysis of Stochastic Models in Systems Biology Under Uncertainty
EAGER:不确定性下系统生物学随机模型的形式分析
  • 批准号:
    2227898
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
A Stochastic Approach for Empirical Analyses of Urban/Traffic Models with Multiple Equilibria
多重均衡城市/交通模型实证分析的随机方法
  • 批准号:
    22K04347
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了