Integrality, Blowup Algebras and Multiplicities
完整性、爆炸代数和多重性
基本信息
- 批准号:0200858
- 负责人:
- 金额:$ 20.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Passing from an affine algebra or an ideal to the integral closureis a fundamental operation. The investigator intends to examinecomputational aspects of this process. While there exist algorithmsfor computing the integral closure of an affine domain, little isknown about the complexity of such calculations. To address thisproblem the investigator intends to find estimates for the numberof algebra generators of the integral closure and for the degreesof these generators. In the case of ideals on the other hand, onestill has no efficient method for computing integral closures. Inview of this lack of an algorithm, the investigator intends toexpress, or at least approximate, the integral closure of an idealby a sum of colon ideals that are more readily accessible. The coreof an ideal is a counterpart of the integral closure: it encodesinformation about all possible reductions of a given ideal, i.e.,all ideals over which the given ideal is integral. The investigatorintends to work on a conjectural formula that, if proved, would givean explicit expression for the core of a large class of ideals.Continuing the somewhat computational theme the investigator proposesto establish bounds for the Castelnuovo-Mumford regularity ofembedded projective varieties in terms of their defining equations.The known results require strong assumptions on the singularities ofthe variety which the investigator hopes to weaken. In this vein heintends to show that rational singularities persist under genericlinkage of ideals in the linkage class of a complete intersection.In continuation of his earlier work on blowup algebras theinvestigator plans to study the rings representing special fibers ofblowups. These `special fiber rings' describe, for instance, imagesof rational maps, including secant varieties and Gauss images. Theinvestigator intends to study the Cohen-Macaulayness of special fiberrings, estimate their depth and compute multiplicities. Suitabledepth estimates would have a bearing on a conjecture by Mazur thatoriginates in Wiles' work on deformations of Galois representations.Formulas for the multiplicity on the other hand would lead to anextension of the Teissier-Pluecker formula for the degrees of certaindual varieties.The investigator works in the area of Mathematics called "Commutative Algebra," which deals with the qualitative study of systems of polynomial equations in several variables. Such systems arise in numerous applications outside mathematics. Over the past two decades commutative algebraists have become more concerned with computational aspects, thereby emphasizing connections to applied areas such as computer algebra, robotics, cryptography and coding theory. This project addresses both theoretical and computational aspects of commutative algebra.
从仿射代数或理想到积分闭包是一个基本运算。调查者打算检查这一过程的计算方面。虽然存在计算仿射域的积分闭包的算法,但对这种计算的复杂性知之甚少。为了解决这个问题,调查人员打算找到估计的代数生成器的积分闭包的数量和这些生成器的degreesof.另一方面,在理想的情况下,仍然没有有效的方法来计算积分闭包。鉴于缺乏算法,研究人员打算通过更容易获得的结肠理想之和来表达或至少近似理想的积分闭合。理想的核心是积分闭包的对应物:它编码了关于给定理想的所有可能约简的信息,即,所有的理想,其中给定的理想是完整的。本书作者打算研究一个数学公式,如果得到证明,将给出一个明确的表达核心的一大类理想。继续有点计算的主题调查proposesto建立边界的Castelnuovo-Mumford正则嵌入投影品种在其定义的equations.The已知的结果需要强有力的假设的奇异性的品种,调查希望削弱。在这方面,他打算表明,理性奇点坚持genericlinkage下的理想的联系类的一个完整的intersect.In延续他的早期工作爆破代数的调查员计划研究环代表特殊纤维的爆破.例如,这些“特殊纤维环”描述了有理映射的像,包括割线簇和高斯像。研究特殊纤维环的Cohen-Macaulay性,估计其深度并计算多重数。适当的深度估计将有一个由Mazur的猜想,起源于怀尔斯的工作变形的伽罗瓦表示。公式的多重性,另一方面将导致一个扩展的Teissier-Pluecker公式的程度certain dual varieties。调查工作在该地区的数学称为“交换代数”,其中涉及定性研究系统的多项式方程在几个变量。 这样的系统出现在数学之外的许多应用中。 在过去的二十年里,交换代数学家越来越关注计算方面,从而强调与计算机代数,机器人,密码学和编码理论等应用领域的联系。 这个项目涉及交换代数的理论和计算方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Ulrich其他文献
Order ideals and a generalized Krull height theorem
- DOI:
10.1007/s00208-004-0513-6 - 发表时间:
2004-08-24 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Craig Huneke;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Tangent star cones.
相切星锥。
- DOI:
10.1515/crll.1997.483.23 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Wolmer V. Vasconcelos;Bernd Ulrich;Aron Simis - 通讯作者:
Aron Simis
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
- DOI:
10.1016/j.jalgebra.2009.04.014 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew R. Kustin;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
- DOI:
10.1007/bf02572392 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Bernd Ulrich;Wolmer V. Vasconcelos - 通讯作者:
Wolmer V. Vasconcelos
Bernd Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Ulrich', 18)}}的其他基金
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201149 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
- 批准号:
1446115 - 财政年份:2015
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
- 批准号:
0901367 - 财政年份:2009
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
- 批准号:
0901613 - 财政年份:2009
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
- 批准号:
0819049 - 财政年份:2009
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
- 批准号:
0753127 - 财政年份:2008
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
相似海外基金
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
571735-2022 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
561540-2021 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2021
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Study on blowup phenomena for Shcr\"odinger equations with non-gauge invariant power type nonlinearities
非规范不变幂型非线性Shcr"odinger方程的爆炸现象研究
- 批准号:
20K14337 - 财政年份:2020
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2020
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual
Blowup phenomena in chemotaxis system
趋化系统中的爆炸现象
- 批准号:
20H01814 - 财政年份:2020
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
- 批准号:
1902033 - 财政年份:2019
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
Study of blowup phenomena for partial differential equations with non-gauge invariant power type nonlinearities
非规范不变幂型非线性偏微分方程的爆炸现象研究
- 批准号:
19J00334 - 财政年份:2019
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2019
- 资助金额:
$ 20.85万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




