E-infinity Algebras and Homotopy Theory
E-无穷代数和同伦理论
基本信息
- 批准号:0203980
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0203980Michael Mandell A.This grant proposes to use E-infinity differential graded algebras to study the homotopy theory of spaces and proposes to study the homotopy theory of E-infinity differential graded algebras and E-infinity ring spectra. The concept of E-infinity differential graded algebra is a generalization of the concept of commutative differential graded algebra; commutativity holds only up to homotopy, and E-infinity differential graded algebras admit Steenrod operations on their cohomology, which measure to some extent the deviation from actual commutativity. E-infinity ring spectra are a stable homotopy theory generalization of E-infinity differential graded algebras. Most commonly studied generalized cohomology theories that have commutative ring structures are represented by E-infinity ring spectra. This extrastructure yields important calculational information about the theory and is useful for various constructions of related theories.Algebraic topology tries to reduce topological or geometricclassification problems into algebra. Because the algebra is usually discrete, it is typically invariant under changes by continuous deformations, or ``homotopies.'' Because of this, fundamental problems in algebraic topology are often phrased in terms of understanding the homotopy equivalence classes of spaces or in terms of computing the number (or more often the ``group'' or ``module'') of homotopy classes of maps between spaces. Quite generally this kind of question can be reformulated as an equivalent question in algebra.The purpose of this proposal is to develop tools to study the sort of algebra that arises in this context.
michael Mandell a.本拨款提出使用e -∞微分梯度代数研究空间的同伦理论,并提出研究e -∞微分梯度代数的同伦理论和e -∞环谱。e -∞微分渐变代数的概念是对交换微分渐变代数概念的推广;交换性只适用于同伦,而e -无穷微分梯度代数在其上同伦上允许Steenrod运算,这在一定程度上度量了与实际交换性的偏差。e -无穷环谱是e -无穷微分梯度代数的稳定同伦理论推广。最常研究的具有交换环结构的广义上同调理论是用e -无穷环谱表示的。这种外结构提供了关于理论的重要计算信息,对相关理论的各种构造很有用。代数拓扑学试图将拓扑或几何分类问题简化为代数。因为代数通常是离散的,它在连续变形或同伦的变化下通常是不变的。正因为如此,代数拓扑中的基本问题通常被表述为理解空间的同伦等价类或计算空间间映射的同伦类的数量(或更经常的是“群”或“模”)。一般来说,这类问题可以重新表述为代数中的等价问题。本提案的目的是开发工具来研究在这种情况下出现的代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mandell其他文献
Michael Mandell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mandell', 18)}}的其他基金
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
- 批准号:
2052846 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Topological Periodic Cyclic Homology, and Noncommutative Algebraic Geometry
合作研究:代数K理论、拓扑周期循环同调和非交换代数几何
- 批准号:
1811820 - 财政年份:2018
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
2016 Graduate Student Topology and Geometry Conference
2016年研究生拓扑与几何会议
- 批准号:
1613059 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Algebraic Topology and Algebraic K-theory
代数拓扑和代数 K 理论
- 批准号:
1505579 - 财政年份:2015
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1206142 - 财政年份:2012
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Algebraic Topology and Algebraic K-Theory
代数拓扑和代数 K 理论
- 批准号:
1105255 - 财政年份:2011
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
相似海外基金
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 8.85万 - 项目类别:
Studentship
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Discovery Grants Program - Individual
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2021
- 资助金额:
$ 8.85万 - 项目类别:
Discovery Grants Program - Individual
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
Discovery Grants Program - Individual
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Homotopy Theory of Algebras and Its Applications
代数同伦论及其应用
- 批准号:
1801806 - 财政年份:2018
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
- 批准号:
1707545 - 财政年份:2017
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant
CBMS Conference: The Basic Homotopy Lemma, The Asymptotic Uniqueness Theorem, and Classification of C*-Algebras, June 1-5, 2015
CBMS 会议:基本同伦引理、渐近唯一性定理和 C* 代数分类,2015 年 6 月 1-5 日
- 批准号:
1444450 - 财政年份:2015
- 资助金额:
$ 8.85万 - 项目类别:
Standard Grant
Puzzles of homotopy algebras related to deformation theory
与形变理论相关的同伦代数难题
- 批准号:
1161867 - 财政年份:2012
- 资助金额:
$ 8.85万 - 项目类别:
Continuing Grant














{{item.name}}会员




