Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
基本信息
- 批准号:RGPIN-2020-06458
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term goal of the programme is to study homotopy Gerstenhaber algebras and other structures up to higher homotopies as well as their applications to problems arising in topology and in transformation groups in particular. Starting point of the programme is the recent breakthrough achieved in my preprints "The cohomology rings of homogeneous spaces" (arxiv:1907.04777) and "The cohomology rings of smooth toric varieties and quotients of moment-angle complexes" (arxiv:1907.04791). By determining these cohomology rings, I answer a question that has been open for 50 years (homogeneous spaces) and correct a mistake that has been in the literature for 20 years (partial quotients of moment-angle complexes). A key ingredient in the proofs is the notion of a homotopy Gerstenhaber algebra (hga). So far, the cup product in the cohomology of a homogeneous space is only established under the assumption that 2 is invertible in the given coefficient ring. My first objective is to extend this, ideally to arbitrary coefficients. Another hard problem is to generalize the proof obtained so far from classifying spaces of groups to arbitrary spaces with polynomial cohomology. These two objectives will serve as a guiding problems for the programme. The progress obtained so far rests on a refined study of homotopy Gerstenhaber algebras and also of so-called strongly homotopy commutative (shc) algebras. I have "pedestrian" proofs that require extremely long, but not very illuminating calculations. However, the form of the solutions suggest that there might be a deeper structure lurking behind the formulas. Obtaining a better understanding in this direction is another objective. Another crucial ingredient so far is an hga formality result for classifying spaces of tori. It has already been extended to Davis-Januszkiewicz spaces. I want to study further extensions of hga formality or possibly weaker notions to classifying spaces of other groups or more general classes of spaces. There are also other instances where up-to-homotopy structures appear or are expected to appear in the study of group actions, and addressing them are further objectives. Let us mention the case of real toric spaces, the toral rank conjecture and applications to free loop spaces and string topology. With Prof. J. Minác I want to apply my recent results to problems in Galois theory. Manual calculations with up-to-homotopy structures soon become tedious because the size of the formulas increases very quickly. A secondary objective of the programme is to develop software tools to facilitate these computations (and to identify suitable computer algebra systems to implement the tools).
该计划的长期目标是研究同伦Gerstenhaber代数和其他结构,以更高的同伦以及它们的应用所产生的问题,在拓扑结构和特别是在变换群。该计划的起点是最近取得的突破,我的预印本“上同调环的齐次空间”(arxiv:1907.04777)和“上同调环的光滑环面品种和concurents的时刻角复合”(arxiv:1907.04791)。通过确定这些上同调环,我回答了一个问题,已经开放了50年(齐次空间),并纠正了一个错误,已在文献中20年(部分矩角复形)。证明中的一个关键要素是同伦Gerstenhaber代数(hga)的概念。到目前为止,齐型空间的上同调中的杯积仅在给定系数环中2可逆的假设下成立。我的第一个目标是将其推广到任意系数。另一个困难的问题是推广到目前为止得到的证明从分类空间的群体,以任意空间的多项式上同调。这两个目标将作为方案的指导问题。到目前为止所取得的进展依赖于同伦Gerstenhaber代数和所谓的强同伦交换(shc)代数的精细研究。我有“行人”证明,需要非常长的时间,但不是很有启发性的计算。然而,解的形式表明,公式背后可能隐藏着更深层次的结构。在这方面取得更好的理解是另一个目标。到目前为止,另一个关键因素是hga对环面空间进行分类的形式结果。它已经被推广到Davis-Januszkiewicz空间。我想研究hga形式的进一步扩展,或者可能更弱的概念来分类其他群的空间或更一般的空间类。在群作用的研究中,也有上同伦结构出现或预期会出现的其他例子,解决这些问题是进一步的目标。让我们提到真实的复曲面空间的情况、toral秩猜想以及对自由循环空间和弦拓扑的应用。我想和米纳克教授一起把我最近的成果应用到伽罗瓦理论中的问题上。由于公式的大小增加得非常快,因此使用上至同伦结构的手动计算很快变得乏味。该方案的第二个目标是开发软件工具,以促进这些计算(并确定适当的计算机代数系统来实施这些工具)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franz, Matthias其他文献
Health-related long-term effects of adverse childhood experiences - an update
- DOI:
10.1007/s00103-016-2421-9 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:1.7
- 作者:
Egle, Ulrich T.;Franz, Matthias;Cierpka, Manfred - 通讯作者:
Cierpka, Manfred
It Is in Your Face-Alexithymia Impairs Facial Mimicry
- DOI:
10.1037/emo0001002 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:4.2
- 作者:
Franz, Matthias;Nordmann, Marc A.;Lundqvist, Daniel - 通讯作者:
Lundqvist, Daniel
Alexithymia in the German general population
- DOI:
10.1007/s00127-007-0265-1 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:4.4
- 作者:
Franz, Matthias;Popp, Kerstin;Braehler, Elmar - 通讯作者:
Braehler, Elmar
Factor structure and reliability of the Toronto Alexithymia Scale (TAS-20) in the German population
- DOI:
10.1055/s-2007-986196 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:0.9
- 作者:
Popp, Kerstin;Schaefer, Ralf;Franz, Matthias - 通讯作者:
Franz, Matthias
THE EFFECT OF A LIGHTWEIGHT MASSAGE SYSTEM IN A CAR SEAT ON COMFORT AND ELECTROMYOGRAM
- DOI:
10.1016/j.jmpt.2010.12.002 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:1.3
- 作者:
Franz, Matthias;Zenk, Raphael;Hallbeck, Susan - 通讯作者:
Hallbeck, Susan
Franz, Matthias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franz, Matthias', 18)}}的其他基金
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Equivariant aspects in cohomology, K-theory and index theory
上同调、K 理论和指数理论中的等变方面
- 批准号:
RGPIN-2014-06520 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Equivariant aspects in cohomology, K-theory and index theory
上同调、K 理论和指数理论中的等变方面
- 批准号:
RGPIN-2014-06520 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Equivariant aspects in cohomology, K-theory and index theory
上同调、K 理论和指数理论中的等变方面
- 批准号:
RGPIN-2014-06520 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Equivariant aspects in cohomology, K-theory and index theory
上同调、K 理论和指数理论中的等变方面
- 批准号:
RGPIN-2014-06520 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Equivariant aspects in cohomology, K-theory and index theory
上同调、K 理论和指数理论中的等变方面
- 批准号:
RGPIN-2014-06520 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topology of toric spaces
复曲面空间的拓扑
- 批准号:
371624-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topology of toric spaces
复曲面空间的拓扑
- 批准号:
371624-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Topology of toric spaces
复曲面空间的拓扑
- 批准号:
371624-2009 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
- 批准号:
23H01068 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Higher homotopy algebras in transformation groups
变换群中的高等同伦代数
- 批准号:
RGPIN-2020-06458 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Homotopy Theory of Algebras and Its Applications
代数同伦论及其应用
- 批准号:
1801806 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
- 批准号:
1707545 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
CBMS Conference: The Basic Homotopy Lemma, The Asymptotic Uniqueness Theorem, and Classification of C*-Algebras, June 1-5, 2015
CBMS 会议:基本同伦引理、渐近唯一性定理和 C* 代数分类,2015 年 6 月 1-5 日
- 批准号:
1444450 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Puzzles of homotopy algebras related to deformation theory
与形变理论相关的同伦代数难题
- 批准号:
1161867 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant