Homotopy Algebras in Noncommutative Geometry
非交换几何中的同伦代数
基本信息
- 批准号:1707545
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the investigation of problems in noncommutative geometry. The idea of noncommutative geometry is to study geometry using noncommutative algebras, which are mathematical objects that have operations of addition and multiplication; however, the multiplication may not be commutative: xy does not have to equal yx. The purpose of the project is to investigate a set of mathematical problems motivated by physics. More specifically, the motivation derives from a combination of ideas from quantum mechanics, string theory, and classical areas of mathematics such as algebra and geometry. The interdisciplinary nature of the research promotes further interaction between these fields. The project provides excellent opportunities for the investigator to work with young scientists and to exchange ideas with colleagues from other countries to promote scientific collaborations.In noncommutative geometry, one studies geometry via algebras of functions on noncommutative manifolds. On such a noncommutative manifold, the relevant objects are no longer points in a space, but rather a noncommutative associative algebra, or a differential graded commutative algebra. An important class of noncommutative manifolds can be obtained as deformations of commutative algebras. The theory of deformation quantization lies on the boundary between classical and quantum mechanics. The mathematical structures of the two theories are very different. Quantization, roughly speaking, is the study and prediction of quantum phenomena, which are normally described by noncommutative associative algebras, from the geometry of their underlying classical counterparts. This project will focus on the study of homotopy algebra structures in noncommutative geometry using tools from deformation quantization and Lie groupoid and Lie algebroid theory. The problems include exploring the Duflo and Todd type class, establishing a Kontsevich-Duflo type theorem, and studying Tsygan noncommutative calculi in a general framework in terms of Lie algebroids.
这个项目涉及非交换几何问题的研究。非交换几何的思想是使用非交换代数来学习几何,非交换代数是具有加法和乘法运算的数学对象;然而,乘法不一定是可交换的:xy不一定等于yx。该项目的目的是研究一组由物理学引起的数学问题。更具体地说,动机来源于量子力学、弦理论和经典数学领域(如代数和几何)的思想组合。该研究的跨学科性质促进了这些领域之间的进一步互动。该项目为研究者提供了与年轻科学家合作以及与来自其他国家的同事交流思想以促进科学合作的绝佳机会。在非交换几何中,人们通过非交换流形上的函数代数来研究几何。在这种非交换流形上,相关对象不再是空间中的点,而是一个非交换的结合代数,或微分渐变交换代数。一类重要的非交换流形可以通过交换代数的变形得到。变形量子化理论处于经典力学和量子力学的边界上。这两种理论的数学结构非常不同。量子化,粗略地说,是对量子现象的研究和预测,这些现象通常由非交换结合代数描述,来自它们潜在的经典对立物的几何。本项目将重点研究非交换几何中的同伦代数结构,使用变形量化、李群和李代数理论等工具。这些问题包括探索Duflo和Todd型类,建立kontsevic -Duflo型定理,以及在李代数的一般框架下研究Tsygan非交换微积分。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fedosov dg manifolds associated with Lie pairs
- DOI:10.1007/s00208-020-02012-6
- 发表时间:2016-05
- 期刊:
- 影响因子:1.4
- 作者:Mathieu Sti'enon;P. Xu
- 通讯作者:Mathieu Sti'enon;P. Xu
Atiyah classes and Kontsevich–Duflo type theorem for dg manifolds
- DOI:10.4064/bc123-3
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:M. Stiénon;P. Xu
- 通讯作者:M. Stiénon;P. Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Xu其他文献
Using the Novel Method of Nonthermal Plasma To Add CI Active Sites on Activated Carbon for Removal of Mercury from Flue Gas
利用非热等离子体在活性炭上添加CI活性位点的新方法去除烟气中的汞
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:11.4
- 作者:
Bi Zhang;Xiaobo Zeng;Ping Xu;Juan Chen;Yang Xu;Guangqian Luo;Minghou Xu;Hong Yao - 通讯作者:
Hong Yao
Formality theorem for g -manifolds ✩
g 流形的形式定理 ✩
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
C. Acad;Sci;Ser. I Paris;Hsuan;M. Stiénon;Ping Xu;Jacky Michéa - 通讯作者:
Jacky Michéa
Use of the familiarity difference cue in inferential judgments
在推理判断中使用熟悉度差异线索
- DOI:
10.3758/s13421-017-0765-5 - 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Ping Xu;C. González;Justin M. Weinhardt;Janna Chimeli;Figen Karadogan - 通讯作者:
Figen Karadogan
Assignment of absolute configuration of sulfinyl dilactones: Optical rotations and 1H NMR experiment and DFT calculations
亚磺酰双内酯的绝对构型分配:旋光度和1H NMR实验以及DFT计算
- DOI:
10.1016/j.molstruc.2010.11.076 - 发表时间:
2011-02 - 期刊:
- 影响因子:3.8
- 作者:
Robert J. Doerksen;Ping Xu;Gang Fu - 通讯作者:
Gang Fu
Coexistence of two D‐lactate‐utilizing systems in Pseudomonas putida KT2440
恶臭假单胞菌 KT2440 中两种乳酸利用系统的共存
- DOI:
10.1111/1758-2229.12429 - 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Yingxin Zhang;Tianyi Jiang;Binbin Sheng;Yangdanyu Long;Chao Gao;Cuiqing Ma;Ping Xu - 通讯作者:
Ping Xu
Ping Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Xu', 18)}}的其他基金
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Higher Structures and Groupoids in Noncommutative Geometry
非交换几何中的高级结构和群形
- 批准号:
1406668 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conferences and School in Poisson Geometry
泊松几何会议和学校
- 批准号:
1212475 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Groupoids, Deformations and Noncommutative Geometry
群形、变形和非交换几何
- 批准号:
1101827 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Operator Algebras and Noncommutative Geometry
算子代数和非交换几何
- 批准号:
0801129 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IHP Workshop on Groupoids in Operator Algebras and Noncommutative Geometry
IHP 算子代数和非交换几何中的群形研讨会
- 批准号:
0654146 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
C* - Algebras, Groupoids, and Noncommutative Geometry
C* - 代数、群形和非交换几何
- 批准号:
0605725 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IHP Workshop on "Higher Structures in Geometry and Physics"
IHP“几何和物理高级结构”研讨会
- 批准号:
0633440 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference on Groupoids and Stacks in Geometry and Physics
几何和物理中的群形和堆栈会议
- 批准号:
0406368 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Monoidal Triangulated Categories
非交换代数和幺半群三角范畴
- 批准号:
2200762 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
- 批准号:
2131243 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Function algebras and operator algebras arising in noncommutative harmonic analysis
非交换调和分析中出现的函数代数和算子代数
- 批准号:
2599047 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Homological Techniques for Noncommutative Algebras and Tensor Categories
非交换代数和张量范畴的同调技术
- 批准号:
2001163 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Higher Structures, Homotopy Algebras, and Noncommutative Geometry
高等结构、同伦代数和非交换几何
- 批准号:
2001599 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Noncommutative association schemes, coherent algebras, their irreducible decompositions and applications
非交换关联方案、相干代数、它们的不可约分解和应用
- 批准号:
20K03527 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)