The Structure of Smooth 4-Manifolds
光滑4流形的结构
基本信息
- 批准号:0204041
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204041Ronald SternFor the last 25 years it has been the goal of exciting and deep mathematics to classify smooth 4-dimensional manifolds. An arsenal of techniques has been thrown at this problem; it is the focus of dozens of research groups. The most successful attempts have associated to each 4-dimensional manifold the solution space to complex systems of equations that arise in particle physics: the Yang-Mills equations and the monopole equations of Seiberg and Witten. These solution spaces are useful in distinguishing cunningly constructed 4-dimensional manifolds. The result of this assault is that 4-dimensional manifolds are more complicated than we ever expected. As a result, it is impossible to predict a classification scheme. It is the goal of this project to more systematically approach the existence and uniqueness framework for a classification scheme. The first goal is to understand why smooth structures on 4-manifolds are sensitive to local topological change. This project describes the underpinnings of how the smooth structures change in the known constructions. Log transformations on null-homologous tori are shown to play a significant role. The first step is to determine if two smooth structures on a fixed homeomorphism type of simply-connected smooth 4-manifold are related by a sequence of log transformations on null-homologous tori. The second step is to determine the characteristic numbers of irreducible smooth 4-manifolds and to determine how these topological invariants affect their Seiberg-Witten invariants. A notion of general-type smooth 4-manifolds is given and a conjectured restriction on their Seiberg-Witten invariants is proposed. This project outlines new constructions that show that there are general-type manifolds that fill out the regions determined by these restrictions. Careful investigation of these constructions should indicate why they are best possible. Other questions related to potential restrictions on the characteristic classes of irreducible simply-connected smooth 4-manifolds will be investigated.Excitement has been generated by the idea that the puniest of all forces, gravity, may in fact be a strong as nature's other three fundamental forces: the strong force which binds protons and neutrons together in atomic nuclei; the weak force which governs radioactive decay; and the forces that govern electricity and magnetism. The perceived mismatch between these three forces and gravity creates a theoretical nightmare; it's the principle reason we have yet to find a grand unified theory. However, it has recently been hypothesized that this weakness is a mirage; the force of gravity only appears weak because its force is diluted in our own universe and most of gravity's force radiates out into extra dimensions. All other forces remain trapped in our 3-dimensional world, while gravity is free to roam other dimensions. With this hypothesis, there could be other worlds that are parallel to our own; they all neatly stack up, each oblivious of the other, with gravity the only force that moves between them. This would also account for the missing dark matter of our universe; it actually resides in other parallel universes. New mathematics will be generated in this project to further explore these ideas. Much of the relevant mathematics has already exposed the special nature of dimensions three and four. These parallel universes may be explained by the theory of (singular) foliations. The proposed study of singular foliations may structure the way in which we view our own universe -how we stack up with possible parallel universes. These singular foliations will also provide new insight into the classification of 4- dimensional manifolds. At bottom, the goal of this project is to develop more systematic constructions of smooth 4-dimensional manifolds with the hope that a general picture begins to emerge that will at least suggest a classification scheme.
DMS-0204041 Ronald Stern在过去的25年里,对光滑的4维流形进行分类一直是令人兴奋和深入的数学目标。一系列的技术已经被扔在这个问题上;它是几十个研究小组的焦点。最成功的尝试是将每个四维流形的解空间与粒子物理学中出现的复杂方程组相关联:杨-米尔斯方程和塞伯格和维滕的牛顿方程。这些解空间在区分巧妙构造的四维流形时是有用的。这种攻击的结果是,四维流形比我们想象的要复杂得多。 因此,不可能预测分类方案。本项目的目标是更系统地探讨分类方案的存在性和唯一性框架。第一个目标是理解为什么4-流形上的光滑结构对局部拓扑变化敏感。该项目描述了已知结构中光滑结构如何变化的基础。零同源环面上的对数变换发挥了重要作用。第一步是确定在一个固定同胚类型的单连通光滑4-流形上的两个光滑结构是否通过零同调环面上的对数变换序列相关联。第二步是确定不可约光滑4-流形的特征数,并确定这些拓扑不变量如何影响它们的Seiberg-Witten不变量。给出了一般型光滑4-流形的概念,并对它们的Seiberg-Witten不变量提出了一个严格的限制。这个项目概述了新的结构,表明有一般类型的流形,填补了这些限制所确定的区域。对这些结构的仔细研究应该指出为什么它们是最好的。我们还将研究与不可约单连通光滑四维流形的特征类的潜在限制有关的其他问题。令人兴奋的是,所有力中最小的引力实际上可能与自然界的其他三种基本力一样强:在原子核中将质子和中子结合在一起的强力;控制放射性衰变的弱力;以及控制电和磁的力。这三种力与引力之间的不匹配造成了理论上的噩梦;这就是我们尚未找到大统一理论的主要原因。然而,最近有人假设这种弱点是海市蜃楼;引力之所以看起来很弱,是因为它的力量在我们自己的宇宙中被稀释了,大部分引力辐射到额外的维度中。所有其他的力都被困在我们的三维世界里,而重力可以自由地漫游其他维度。根据这一假设,可能存在与我们平行的其他世界;它们整齐地堆叠在一起,彼此互不相关,引力是它们之间唯一的作用力。这也可以解释我们宇宙中缺少的暗物质;它实际上存在于其他平行宇宙中。新的数学将在这个项目中产生,以进一步探索这些想法。许多相关的数学已经揭示了三维和四维的特殊性质。这些平行宇宙可以用(奇异)叶理理论来解释。对奇异叶理的拟议研究可能会构建我们看待自己宇宙的方式-我们如何与可能的平行宇宙叠加。这些奇异叶理也将为四维流形的分类提供新的见解。 在底部,这个项目的目标是开发更系统的光滑四维流形的结构,希望一个一般的图片开始出现,至少会建议一个分类方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Stern其他文献
Correction to: Constructing lens spaces by surgery on knots
- DOI:
10.1007/bf01218377 - 发表时间:
1981-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Ronald Fintushel;Ronald Stern - 通讯作者:
Ronald Stern
Ronald Stern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Stern', 18)}}的其他基金
Symplectic maps to P2, symplectic Lefschetz pencils and new symplectic invariants - a conference proposal
辛映射到 P2、辛 Lefschetz 铅笔和新的辛不变量 - 会议提案
- 批准号:
0105389 - 财政年份:2001
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Mathematical Sciences: The Structure of Smooth 4-Manifolds
数学科学:光滑 4 流形的结构
- 批准号:
9626330 - 财政年份:1996
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for 3- and 4-Manifolds
数学科学:3 流形和 4 流形的不变量
- 批准号:
9302526 - 财政年份:1993
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants for 3- and 4- Manifolds
数学科学:3 流形和 4 流形的不变量
- 批准号:
9002517 - 财政年份:1990
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applications of Differential Geometryand Global Analysis to Low Dimensional Topology
数学科学:微分几何和全局分析在低维拓扑中的应用
- 批准号:
8703413 - 财政年份:1987
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Topology and Geometry of Smooth 4-Manifolds
数学科学:光滑 4 流形的拓扑和几何
- 批准号:
8402214 - 财政年份:1984
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Z/2 Homology 3-Spheres and the 4-Manifolds They Bound
Z/2 同调 3 球体及其所束缚的 4 流形
- 批准号:
8002843 - 财政年份:1980
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Simplicial Triangulations of Topological Manifolds
拓扑流形的单纯三角剖分
- 批准号:
7606393 - 财政年份:1976
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
相似海外基金
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309779 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309780 - 财政年份:2023
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Understanding Smooth Structures via Regular Homotopy of Surfaces in 4-Manifolds
通过 4 流形中曲面的正同伦了解光滑结构
- 批准号:
2204367 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Algebraic K-Theory in Fixed-Point Theory and Smooth Manifolds
定点理论和光滑流形中的代数 K 理论
- 批准号:
2005524 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Smooth 4-Manifolds: 2-3, 5- and 6-Dimensional Perspectives
平滑 4 流形:2-3、5 和 6 维视角
- 批准号:
2005554 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
1956310 - 财政年份:2020
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Differential geometric structures on smooth manifolds and Gromov-Hausdorff convergences
光滑流形上的微分几何结构和 Gromov-Hausdorff 收敛性
- 批准号:
19K03474 - 财政年份:2019
- 资助金额:
$ 21.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)