Studies in Commutative Algebra
交换代数研究
基本信息
- 批准号:0243081
- 负责人:
- 金额:$ 1.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will work on some questions in the theory of commutative rings that arise from tight closure theory, the theory of intersection multiplicities, a study of local cohomology modules, and from the homological conjectures for local rings. In tight closure theory, there is a substantial focus on understanding the class of F-regular rings and on developing theorems for this class of rings. The study of local cohomology modules addresses finiteness issues of these modules over regular rings of mixed characteristic, and another question that is related to the theory of solid closure. Research on Hilbert-Kunz multiplicities and on the rigidity of the Tor functor will be carried out in continued collaboration with Claudia Miller. Commutative algebra is a field closely related to algebraic geometry: while algebraic geometry focuses on the geometry of solutions sets of polynomial equations, in commutative algebra the main objects of study are certain functions on these solution sets. The connections between algebra and geometry are largely due to the revolutionary work of Grothendieck, Serre and Zariski. An active area of research in commutative algebra today is the theory of tight closure developed by Hochster and Huneke. This theory provides stronger formulations of existing theorems, and brings together many seemingly unrelated problems. It also has strong connections with the study of singularities of geometric objects. The theory of local cohomology was developed by Grothendieck who used it to obtain several striking results. Local cohomology has applications to basic, and yet deep, questions such as determining the minimal number of polynomial equations needed to define an algebraic set. It continues to develop a fascinating interaction with several other branches of mathematics.
研究者将研究交换环理论中由紧闭理论、交多重理论、局部上同调模的研究以及局部环的同调猜想引起的一些问题。在紧闭理论中,对f正则环的理解和对这类环的定理的发展有着实质性的关注。局部上同模的研究解决了这些模在混合特征正则环上的有限性问题,以及另一个与实闭理论有关的问题。Hilbert-Kunz复数和Tor函子刚性的研究将继续与Claudia Miller合作进行。交换代数是一个与代数几何密切相关的领域:代数几何关注多项式方程解集的几何,而交换代数的主要研究对象是这些解集上的某些函数。代数和几何之间的联系很大程度上要归功于格罗滕迪克、塞尔和扎里斯基的革命性工作。交换代数中一个活跃的研究领域是由Hochster和Huneke发展的紧闭理论。这个理论为现有的定理提供了更有力的表述,并汇集了许多看似无关的问题。它与几何物体奇点的研究也有着密切的联系。局部上同调理论是由格罗滕迪克提出的,他利用它得到了几个惊人的结果。局部上同调可以应用于基本而深刻的问题,例如确定定义代数集所需的多项式方程的最小数量。它继续发展与其他几个数学分支的迷人的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Higher matching complexes of complete graphs and complete bipartite graphs
完全图和完全二分图的更高匹配复合体
- DOI:
10.1016/j.disc.2021.112761 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh - 通讯作者:
Anurag Singh
Discovery of Potent and Selective Covalent Inhibitors of HER2WT and HER2YVMA.
HER2WT 和 HER2YVMA 的强效选择性共价抑制剂的发现。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
E. Hicken;Karin Brown;Natalie C Dwulet;J. Gaudino;Erik P Hansen;Dylan P Hartley;John P Kowalski;Ellen R Laird;Nicholas C. Lazzara;Bin Li;Tung;Marie F Mutryn;Lauren Oko;Spencer P Pajk;Robert W Pipal;Rachel Z Rosen;Russell A Shelp;Anurag Singh;Jing Wang;C. E. Wise;Christina E Wong;Jim Y Wong - 通讯作者:
Jim Y Wong
The fungal ligand chitin directly binds and signals inflammation dependent on oligomer size and TLR2
真菌配体几丁质直接结合并根据寡聚体大小和 TLR2 发出炎症信号
- DOI:
10.1101/270405 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Fuchs;Yamel Cardona Gloria;Olaf;Franziska Herster;L. Sharma;C. Dillen;Christoph Täumer;Sabine Dickhöfer;Zsofia Bittner;Truong‐Minh Dang;Anurag Singh;Daniel Haischer;Maria A. Schlöffel;Kirsten J. Koymans;Tharmila Sanmuganantham;Milena Krach;Nadine A Schilling;F. Frauhammer;L. Miller;T. Nürnberger;S. Leibundgut;Andrea A. Gust;B. Maček;M. Frank;C. Gouttefangeas;C. D. Dela Cruz;D. Hartl;A. Weber - 通讯作者:
A. Weber
Ensemble Learning with Hybrid Modelling for Multivariate AQI, PM2.5, and PM10 Forecasting in Mumbai
使用混合建模进行集成学习,用于孟买的多元 AQI、PM2.5 和 PM10 预测
- DOI:
10.1109/cset58993.2023.10346745 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh;Pratham Soni;Deepa Krishnan;Ishaan Potle - 通讯作者:
Ishaan Potle
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
- 批准号:
0600819 - 财政年份:2006
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
相似海外基金
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
2200501 - 财政年份:2022
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1902116 - 财政年份:2019
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
1401384 - 财政年份:2014
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
- 批准号:
0901145 - 财政年份:2009
- 资助金额:
$ 1.7万 - 项目类别:
Continuing Grant














{{item.name}}会员




