Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
基本信息
- 批准号:1801285
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is concerned with several questions in commutative algebra: this is a field that studies solution sets of polynomial equations by means of studying polynomial functions on the solution sets. Polynomial equations arise naturally in a number of situations, and commutative algebra continues to develop a fascinating interaction with several fields, becoming an increasingly valuable tool in science and engineering. The focus of the project is on questions in commutative algebra relating to local cohomology, tight closure theory, and classical rings of invariants; all of these questions arise quite naturally from recent developments. Local cohomology often provides the best answers to fundamental questions such as the least number of polynomial equations needed to define a solution set. Projects in this direction include algorithmic aspects as well as structural properties; there is a special focus on local cohomology modules of polynomial rings over the integers: this stems from the fact that there is a canonical homomorphism from the integers to any ring, and this makes local cohomology modules over the integers, in a sense, universal. This viewpoint has proved useful in recent joint work with Lyubeznik and Walther. At the same time, new techniques for investigating local cohomology over the integers have been developed in joint work with Bhatt, Blickle, Lyubeznik, and Zhang; it is proposed to extend these new techniques to an algorithm. Projects related to tight closure theory include investigating the singularities of Hankel determinantal rings, a question coming from recent joint work with Conca, Mostafazadehfard, and Varbaro, and whether these rings arise as invariant rings for actions of linearly reductive groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本课题涉及交换代数中的几个问题:这是一个通过研究解集上的多项式函数来研究多项式方程解集的领域。多项式方程在许多情况下自然出现,交换代数继续与几个领域发展出迷人的相互作用,成为科学和工程中越来越有价值的工具。该项目的重点是交换代数中有关局部上同调、紧闭理论和经典不变量环的问题;所有这些问题都很自然地出现在最近的事态发展中。局部上同调通常为基本问题提供最佳答案,例如定义解集所需的多项式方程的最少数量。这个方向的项目包括算法方面以及结构特性;我们特别关注整数上多项式环的局部上同调模:这源于整数到任何环都有一个正则同态,这使得整数上的局部上同调模,在某种意义上是全称的。这一观点在最近与吕别兹尼克和瓦尔特的联合工作中被证明是有用的。与此同时,与Bhatt, Blickle, Lyubeznik和Zhang共同研究了整数上的局部上同性的新技术;提出将这些新技术扩展为一个算法。与紧密闭包理论相关的项目包括调查Hankel确定性环的奇异性,这是最近与Conca, mostafazadehhard和Varbaro共同研究的问题,以及这些环是否会作为线性约化群作用的不变环出现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stabilization of the cohomology of thickenings
- DOI:10.1353/ajm.2019.0013
- 发表时间:2016-05
- 期刊:
- 影响因子:1.7
- 作者:B. Bhatt;Manuel Blickle;G. Lyubeznik;Anurag Singh;Wenliang Zhang
- 通讯作者:B. Bhatt;Manuel Blickle;G. Lyubeznik;Anurag Singh;Wenliang Zhang
Koszul and local cohomology, and a question of Dutta
Koszul 和局部上同调,以及 Dutta 问题
- DOI:10.1007/s00209-020-02619-0
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Ma, Linquan;Singh, Anurag K.;Walther, Uli
- 通讯作者:Walther, Uli
On a conjecture of Lynch
关于林奇的猜想
- DOI:10.1080/00927872.2020.1722821
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Singh, Anurag K.;Walther, Uli
- 通讯作者:Walther, Uli
An asymptotic vanishing theorem for the cohomology of thickenings
加厚上同调的渐近消失定理
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Bhatt, Bhargav;Blickle, Manuel;Lyubeznik, Gennady;Singh, Anurag K.;Zhang, Wenliang
- 通讯作者:Zhang, Wenliang
Homogeneous prime elements in normal two-dimensional graded rings
普通二维渐变环中的齐次素数元素
- DOI:10.1016/j.jalgebra.2018.07.012
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Singh, Anurag K.;Takahashi, Ryo;Watanabe, Kei-ichi
- 通讯作者:Watanabe, Kei-ichi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Higher matching complexes of complete graphs and complete bipartite graphs
完全图和完全二分图的更高匹配复合体
- DOI:
10.1016/j.disc.2021.112761 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh - 通讯作者:
Anurag Singh
The fungal ligand chitin directly binds and signals inflammation dependent on oligomer size and TLR2
真菌配体几丁质直接结合并根据寡聚体大小和 TLR2 发出炎症信号
- DOI:
10.1101/270405 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Fuchs;Yamel Cardona Gloria;Olaf;Franziska Herster;L. Sharma;C. Dillen;Christoph Täumer;Sabine Dickhöfer;Zsofia Bittner;Truong‐Minh Dang;Anurag Singh;Daniel Haischer;Maria A. Schlöffel;Kirsten J. Koymans;Tharmila Sanmuganantham;Milena Krach;Nadine A Schilling;F. Frauhammer;L. Miller;T. Nürnberger;S. Leibundgut;Andrea A. Gust;B. Maček;M. Frank;C. Gouttefangeas;C. D. Dela Cruz;D. Hartl;A. Weber - 通讯作者:
A. Weber
Discovery of Potent and Selective Covalent Inhibitors of HER2WT and HER2YVMA.
HER2WT 和 HER2YVMA 的强效选择性共价抑制剂的发现。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.3
- 作者:
E. Hicken;Karin Brown;Natalie C Dwulet;J. Gaudino;Erik P Hansen;Dylan P Hartley;John P Kowalski;Ellen R Laird;Nicholas C. Lazzara;Bin Li;Tung;Marie F Mutryn;Lauren Oko;Spencer P Pajk;Robert W Pipal;Rachel Z Rosen;Russell A Shelp;Anurag Singh;Jing Wang;C. E. Wise;Christina E Wong;Jim Y Wong - 通讯作者:
Jim Y Wong
Salicylazine activated plasmonic silver nanoprisms for identification of Fe(ii) and Fe(iii) from aqueous solutions
水杨嗪激活等离子体银纳米棱柱用于鉴定水溶液中的 Fe(ii) 和 Fe(iii)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Deovrat Singh;Raksha Singh;Abhay Kumar;Anurag Singh;M. Yadav;K. Upadhyay - 通讯作者:
K. Upadhyay
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
- 批准号:
0600819 - 财政年份:2006
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
相似海外基金
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
- 批准号:
2213166 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Fellowship Award
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Representation theory over local rings
局部环的表示论
- 批准号:
EP/T004592/1 - 财政年份:2020
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
Representation theory over local rings
局部环的表示论
- 批准号:
EP/T004606/1 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
Dynamics of astrophysical discs through local studies of rings
通过对环的局部研究来研究天体物理圆盘的动力学
- 批准号:
2267215 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Studentship
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Hilbert function of local rings
局部环的希尔伯特函数
- 批准号:
15K04820 - 财政年份:2015
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation growth of linear groups over local rings
线性群在局部环上的表示增长
- 批准号:
EP/K024779/1 - 财政年份:2014
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
Research on the Hilbert functions in local rings
局部环中希尔伯特函数的研究
- 批准号:
25800020 - 财政年份:2013
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Homological Behavior of Modules over Commutative Local Rings
交换本地环上模的同调行为
- 批准号:
1101131 - 财政年份:2011
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant














{{item.name}}会员




