Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
基本信息
- 批准号:1801285
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is concerned with several questions in commutative algebra: this is a field that studies solution sets of polynomial equations by means of studying polynomial functions on the solution sets. Polynomial equations arise naturally in a number of situations, and commutative algebra continues to develop a fascinating interaction with several fields, becoming an increasingly valuable tool in science and engineering. The focus of the project is on questions in commutative algebra relating to local cohomology, tight closure theory, and classical rings of invariants; all of these questions arise quite naturally from recent developments. Local cohomology often provides the best answers to fundamental questions such as the least number of polynomial equations needed to define a solution set. Projects in this direction include algorithmic aspects as well as structural properties; there is a special focus on local cohomology modules of polynomial rings over the integers: this stems from the fact that there is a canonical homomorphism from the integers to any ring, and this makes local cohomology modules over the integers, in a sense, universal. This viewpoint has proved useful in recent joint work with Lyubeznik and Walther. At the same time, new techniques for investigating local cohomology over the integers have been developed in joint work with Bhatt, Blickle, Lyubeznik, and Zhang; it is proposed to extend these new techniques to an algorithm. Projects related to tight closure theory include investigating the singularities of Hankel determinantal rings, a question coming from recent joint work with Conca, Mostafazadehfard, and Varbaro, and whether these rings arise as invariant rings for actions of linearly reductive groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及交换代数中的几个问题:这是一个领域,该领域通过研究溶液集的多项式函数来研究多项式方程的解决方案集。多项式方程在许多情况下自然出现,而交换代数继续与几个领域建立迷人的互动,成为科学和工程学中越来越有价值的工具。该项目的重点是与当地同胞,紧密闭合理论和不变的经典戒指有关的交换代数的问题。所有这些问题都自然而然地来自最近的发展。当地的同时学通常可以为基本问题提供最佳答案,例如定义解决方案集所需的最少的多项式方程。朝这个方向的项目包括算法方面和结构特性;特殊的重点是整数上多项式环的局部共同体学模块:这源于以下事实:以下事实:从整数到任何环都有规范的同态,这使整数上的局部共同体学模块在一个通用中。在与Lyubeznik和Walther最近的联合合作中,该观点已被证明很有用。同时,在与Bhatt,Blickle,Lyubeznik和Zhang的联合合作中开发了用于研究整数的本地共同体学的新技术。建议将这些新技术扩展到算法。与紧密闭合理论相关的项目包括调查汉克尔决定性戒指的奇点,来自最近与conca,mostafazadehfard和varbaro的联合合作提出的问题,以及这些戒指是否作为线性还原群体的行动而出现的戒指。这些奖项反映了NSF的法定任务和构成的范围。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stabilization of the cohomology of thickenings
- DOI:10.1353/ajm.2019.0013
- 发表时间:2016-05
- 期刊:
- 影响因子:1.7
- 作者:B. Bhatt;Manuel Blickle;G. Lyubeznik;Anurag Singh;Wenliang Zhang
- 通讯作者:B. Bhatt;Manuel Blickle;G. Lyubeznik;Anurag Singh;Wenliang Zhang
Koszul and local cohomology, and a question of Dutta
Koszul 和局部上同调,以及 Dutta 问题
- DOI:10.1007/s00209-020-02619-0
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Ma, Linquan;Singh, Anurag K.;Walther, Uli
- 通讯作者:Walther, Uli
On a conjecture of Lynch
关于林奇的猜想
- DOI:10.1080/00927872.2020.1722821
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Singh, Anurag K.;Walther, Uli
- 通讯作者:Walther, Uli
An asymptotic vanishing theorem for the cohomology of thickenings
加厚上同调的渐近消失定理
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Bhatt, Bhargav;Blickle, Manuel;Lyubeznik, Gennady;Singh, Anurag K.;Zhang, Wenliang
- 通讯作者:Zhang, Wenliang
Homogeneous prime elements in normal two-dimensional graded rings
普通二维渐变环中的齐次素数元素
- DOI:10.1016/j.jalgebra.2018.07.012
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Singh, Anurag K.;Takahashi, Ryo;Watanabe, Kei-ichi
- 通讯作者:Watanabe, Kei-ichi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Energy-Based DCT Approach for PPG Compression
用于 PPG 压缩的基于能量的 DCT 方法
- DOI:
10.1109/embc48229.2022.9871575 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shresth Gupta;Anurag Singh;Abhishek Sharma - 通讯作者:
Abhishek Sharma
Ensemble Learning with Hybrid Modelling for Multivariate AQI, PM2.5, and PM10 Forecasting in Mumbai
使用混合建模进行集成学习,用于孟买的多元 AQI、PM2.5 和 PM10 预测
- DOI:
10.1109/cset58993.2023.10346745 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh;Pratham Soni;Deepa Krishnan;Ishaan Potle - 通讯作者:
Ishaan Potle
Biclonal chronic lymphocytic leukemia presenting as skin lesion.
双克隆慢性淋巴细胞白血病表现为皮肤病变。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Anurag Singh;S. Graziano;Neerja Vajpayee - 通讯作者:
Neerja Vajpayee
149 Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS-mutant Cancer Models
149 BCL-XL 和 MEK 联合抑制的合成致死相互作用促进 KRAS 突变癌症模型中的肿瘤消退
- DOI:
10.1016/s0959-8049(12)71947-0 - 发表时间:
2012 - 期刊:
- 影响因子:8.4
- 作者:
R. Corcoran;Katherine A. Cheng;A. Hata;A. Faber;Anurag Singh;J. Settleman;C. Benes;M. Mino‐Kenudson;Kwok;J. Engelman - 通讯作者:
J. Engelman
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
- 批准号:
0600819 - 财政年份:2006
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
相似海外基金
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
- 批准号:
2213166 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Fellowship Award
Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
- 批准号:
2101671 - 财政年份:2021
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Representation theory over local rings
局部环的表示论
- 批准号:
EP/T004592/1 - 财政年份:2020
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
Representation theory over local rings
局部环的表示论
- 批准号:
EP/T004606/1 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
Dynamics of astrophysical discs through local studies of rings
通过对环的局部研究来研究天体物理圆盘的动力学
- 批准号:
2267215 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Studentship