Local Cohomology, Differential Operators, and Determinantal Rings
局部上同调、微分算子和行列环
基本信息
- 批准号:2101671
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The award is concerned with several questions in commutative algebra: this is a field that studies solution sets of polynomial equations, and the questions that will be investigated eventually yield information about the nature of the solution sets. Polynomial equations arise in a number of situations; indeed commutative algebra continues to develop a fascinating interaction with several fields, becoming an increasingly valuable tool in science and engineering. The focus here is on questions relating to differential operators, particularly in the context of rings of invariants; the differential operators may be thought of as extensions of the rules of calculus to solutions sets of polynomials, while the rings of invariants are collections of polynomials that remain unchanged under various transformations. A key part of the awarded work is the training of graduate students in topics connected with the research program.Levasseur and Stafford described the rings of differential operators on various classical invariant rings of characteristic zero; one of the projects, related to the PI's recent joint work with Jeffries, is studying the rings of differential operators on classical invariant rings in the positive characteristic case, and another is the behavior of differential operators under base change. Key tools for these come from local cohomology theory, and the study of integer torsion in local cohomology modules. Other projects involve Hankel determinantal rings, close cousins of the determinantal rings of classical invariant theory. The F-regularity of Hankel determinantal rings of positive prime characteristic will be investigated; this has an entirely equivalent formulation in terms of differential operators. The question arises naturally from the PI's joint work with Conca, Mostafazadehfard, and Varbaro, where it was proved that these rings have rational singularities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项涉及交换代数中的几个问题:这是一个研究解决方案的解决方案集的领域,以及将要研究的问题最终会产生有关解决方案集的性质的信息。多项式方程在多种情况下出现;的确,换档代数继续与几个领域建立着令人着迷的互动,成为科学和工程学中越来越有价值的工具。这里的重点是与差异操作员有关的问题,尤其是在不变的环的背景下;可以将差分运算符视为对多项式解决方案集的计算规则的扩展,而不变的环是多项式的集合,在各种变换下保持不变。奖励工作的关键部分是对与研究计划相关的主题研究生的培训。Levasseurand Stafford描述了差异操作员在各种特征零的经典不变环上的戒指;其中一个项目与PI最近与Jeffries的联合工作有关,它正在研究差异操作员在积极特征中的经典不变环的环,而另一个项目是基本变化下差异操作员的行为。这些的关键工具来自当地的同时理论,以及对局部协同学模块中整数扭转的研究。其他项目涉及汉克尔决定性环,是经典不变理论的决定性环的近亲。将研究汉克尔决定性环的f频率。就差异操作员而言,这具有完全等效的配方。这个问题自然来自PI与Conca,Mostafazadehfard和Varbaro的共同工作,在此证明,这些环具有合理的细纹。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anurag Singh其他文献
Energy-Based DCT Approach for PPG Compression
用于 PPG 压缩的基于能量的 DCT 方法
- DOI:
10.1109/embc48229.2022.9871575 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shresth Gupta;Anurag Singh;Abhishek Sharma - 通讯作者:
Abhishek Sharma
Ensemble Learning with Hybrid Modelling for Multivariate AQI, PM2.5, and PM10 Forecasting in Mumbai
使用混合建模进行集成学习,用于孟买的多元 AQI、PM2.5 和 PM10 预测
- DOI:
10.1109/cset58993.2023.10346745 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anurag Singh;Pratham Soni;Deepa Krishnan;Ishaan Potle - 通讯作者:
Ishaan Potle
Biclonal chronic lymphocytic leukemia presenting as skin lesion.
双克隆慢性淋巴细胞白血病表现为皮肤病变。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Anurag Singh;S. Graziano;Neerja Vajpayee - 通讯作者:
Neerja Vajpayee
149 Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS-mutant Cancer Models
149 BCL-XL 和 MEK 联合抑制的合成致死相互作用促进 KRAS 突变癌症模型中的肿瘤消退
- DOI:
10.1016/s0959-8049(12)71947-0 - 发表时间:
2012 - 期刊:
- 影响因子:8.4
- 作者:
R. Corcoran;Katherine A. Cheng;A. Hata;A. Faber;Anurag Singh;J. Settleman;C. Benes;M. Mino‐Kenudson;Kwok;J. Engelman - 通讯作者:
J. Engelman
Anurag Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anurag Singh', 18)}}的其他基金
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
- 批准号:
2349623 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Determinantal Rings, Local Cohomology, and Tight Closure
行列式环、局部上同调和紧闭
- 批准号:
1801285 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Questions on Local Cohomology and Tight Closure Theory
关于局部上同调和紧闭理论的问题
- 批准号:
1500613 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Local cohomology, tight closure, and related questions
局部上同调、紧闭性及相关问题
- 批准号:
1162585 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Tight Closure, Local Cohomology, and Related Questions
紧闭、局部上同调及相关问题
- 批准号:
0600819 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
基于单细胞多组学解析不同时间段运动改善超重个体代谢的免疫图谱与调控网络
- 批准号:32371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
- 批准号:32101169
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于不同时间尺度约束的东昆仑断裂东段运动学特征研究
- 批准号:41872226
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
基于多组学数据整合的不同时期胃癌动态调控机制研究
- 批准号:31801118
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
- 批准号:
1945611 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
The tt* equations: a bridge between the differential geometry of moduli spaces and classical isomonodromy theory
tt* 方程:模空间微分几何与经典等单性理论之间的桥梁
- 批准号:
18H03668 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Algebraic aanalysis of non-isolated singularities and computational complex analysis algorithms
非孤立奇点的代数分析和计算复杂分析算法
- 批准号:
18K03320 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology of real-valued differential forms on Berkovich analytic spaces
Berkovich 解析空间上实值微分形式的上同调
- 批准号:
387554191 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Research Fellowships