FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws

FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题

基本信息

  • 批准号:
    0244343
  • 负责人:
  • 金额:
    $ 12.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTFRG: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation LawsHistorically, fluid and solid mechanics study the motion ofincompressible and compressible materials, with or without internaldissipation. For gases and solids with internal dissipation as asecondary effect, the gross wave dynamics is governed by inviscid,thermal diffusionless, dynamics. Within these categories, compressiblemotion for solids corresponds to the study of elastic waves and theirpropagation; compressible motion for fluids is usually associated withinviscid gas dynamics. Furthermore both compressible solids and fluids exhibit shock waves and hence we must search for discontinous solutions to the underlying equations of motion.Incompressible motion on the other hand concernsitself with the motion of denser fluids where the idealization ofincompressibility is useful, e.g. water or oil, as well as the motion ofcertain solids like rubber. While there are still many importantmathematical issues to be resolved for incompressible fluids, for example,the well-posedness of the Navier-Stokes equations in three spacedimensions, the mathematical study of compressiblesolids (as represented by the equations of nonlinear elastodynamics) andfluids (as represented by the Euler equations of inviscid flows)in two and three space dimensions is even less developed.This provides the motivation to the proposers to collaborate in athree year effort to advance the mathematical understanding of themulti-dimensional equations of inviscid compressible fluid dynamicsand related problems in elastodynamics.The core of our plan is to arrange a sustained interaction between andaround the members of the group, who will(1) collaborate scientifically, focusing on the advancement of theanalysis of multi-dimensional compressible flows by developing newtheoretical techniques and by using and designing effective, robust andreliable numerical methods;(2) work together over the next several years to create the environmentand manpower necessary for the research on multi-dimensional compressibleEuler equations and related problems to flourish; and in the meantime,(3) share the responsibility of training graduate students andpostdoctoral fellows.The project is devoted to a mathematical study of the Euler equationsgoverning the motion of an inviscid compressible fluid and relatedproblems. Compressible fluids occur all around us in nature, e.g. gasesand plasmas, whose study is crucial to understanding aerodyanmics,atmospheric sciences, thermodynamics, etc.While the one-dimensional fluid flows are rather well understood, thegeneral theory for multi-dimensional flows is comparatively mathematicallyunderdeveloped. The proposers will collaborate in a threeyear effort to advance the mathematical understanding of themulti-dimensional equations of inviscid compressible fluid dynamics.Success in this project will advance knowledge of this fundamental area ofmathematics and mechanics and will introduce a new generation ofresearchers to the outstanding problems in the field.
摘要:可压缩流体流动欧拉方程的多维问题以及双曲守恒定律中的相关问题历史上,流体和固体力学研究不可压缩和可压缩材料的运动,无论是否存在内部耗散。对于具有内部耗散作为二次效应的气体和固体,总波动力学由无粘性、无热扩散动力学控制。在这些类别中,固体的可压缩运动对应于弹性波及其传播的研究;流体的可压缩运动通常与粘性气体动力学相关。此外,可压缩固体和流体都表现出冲击波,因此我们必须寻找基本运动方程的不连续解。另一方面,不可压缩运动涉及较稠密流体的运动,其中不可压缩性的理想化是有用的,例如水或油,以及某些固体(如橡胶)的运动。虽然不可压缩流体还有许多重要的数学问题有待解决,例如三维空间中纳维-斯托克斯方程的适定性,但二维和三维空间中可压缩固体(以非线性弹性动力学方程为代表)和流体(以无粘流欧拉方程为代表)的数学研究就更少了 这为提案者提供了三年合作的动力,以推进对无粘可压缩流体动力学的多维方程和弹性动力学相关问题的数学理解。我们计划的核心是安排小组成员之间和周围的持续互动,他们将(1)进行科学合作,重点是通过开发来推进多维可压缩流动的分析 新的理论技术以及使用和设计有效、稳健和可靠的数值方法;(2)在未来几年共同努力,为多维可压缩欧拉方程及相关问题的研究蓬勃发展创造必要的环境和人力;同时,(3)承担培养研究生和博士后的责任。该项目致力于非粘性可压缩流体运动的欧拉方程及相关问题的数学研究。可压缩流体在自然界中随处可见,例如气体和等离子体,其研究对于理解空气动力学、大气科学、热力学等至关重要。虽然一维流体流动已被很好地理解,但多维流动的一般理论在数学上相对不发达。提议者将在三年的时间内合作,推进对无粘可压缩流体动力学多维方程的数学理解。该项目的成功将增进对数学和力学这一基础领域的了解,并将为新一代研究人员介绍该领域的突出问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suncica Canic其他文献

Suncica Canic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suncica Canic', 18)}}的其他基金

Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
  • 批准号:
    2247000
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
  • 批准号:
    2011319
  • 财政年份:
    2020
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
  • 批准号:
    1853340
  • 财政年份:
    2019
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
  • 批准号:
    1613757
  • 财政年份:
    2016
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
  • 批准号:
    1318763
  • 财政年份:
    2013
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Fluid-multi-layered-structure interaction problems
流体-多层结构相互作用问题
  • 批准号:
    1311709
  • 财政年份:
    2013
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
  • 批准号:
    1263572
  • 财政年份:
    2013
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
  • 批准号:
    1109189
  • 财政年份:
    2011
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
  • 批准号:
    1015002
  • 财政年份:
    2010
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Moving-boundary problems in blood flow
血流的移动边界问题
  • 批准号:
    0806941
  • 财政年份:
    2008
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了