Fluid-multi-layered-structure interaction problems

流体-多层结构相互作用问题

基本信息

  • 批准号:
    1311709
  • 负责人:
  • 金额:
    $ 20.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Fluid-structure interaction (FSI) problems arise in many applications. The widely known examples are aeroelasticity and biofluids. In biofluidic applications, such as, e.g., the study of interaction between blood flow and cardiovascular tissue, the coupling between the fluid and the relatively light structure is highly nonlinear, requiring sophisticated ideas for the study of their solutions. In the blood flow application, the problems are further exacerbated by the fact that the walls of major arteries are composed of several layers, each with different mechanical characteristics. No results exist so far that analyze solutions to fluid-structure interaction problems in which the structure is composed of several different layers. The proposed research takes a first step in this direction by proposing a program to study the existence of solutions to a class of FSI problems describing the interaction between a multi-layered structure and the flow of an incompressible, viscous fluid, giving rise to a fully coupled, nonlinear moving boundary, fluid-multi-structure interaction problem. The analysis relies on a novel, loosely coupled, partitioned, time-marching numerical scheme, and on novel compactness arguments providing convergence of the numerical scheme to a weak solution of the nonlinear fluid-multi-layered structure interaction problem. The proposed program opens up a new field within the area of FSI problems. This work brings to light several features that have not been studied before. In particular, this work reveals a new regularizing mechanism in FSI problems that is due to the presence of a fluid-structure interface with mass. The inertia of the fluid-structure interface regularizes the evolution of the entire FSI solution.This is an exciting, novel study requiring the development of original mathematical techniques motivated by an important biological application: the interaction between blood flow and human arterial walls. It is well-known that arterial walls are composed of several layers, each with different mechanical characteristics and thickness. The healthy physiology and the pathophysiology of the human cardiovascular system are significantly affected by the pulsation of arterial walls during each cardiac cycle. However, the interaction between the different arterial wall layers and their interaction with blood flow is still not completely understood. For example, recent developments in ultrasound speckle tracking methods revealed significant shear strain between the different layers of arterial walls in high adrenaline situations. The consequences of this phenomenon on the initiation of cardiovascular disease are yet to be understood. The proposed research makes a step in this direction by designing mathematical models, and by analyzing solutions of the mathematical models that capture fluid-structure interaction between blood flow and arterial walls in the case when arterial walls are modeled as multi-layered structures. No mathematical results exist so far in this area, and the proposed research opens up a new area in the field of fluid-structure interaction problems. The work proposed here promises to develop a strong partnership between the University of Houston, the University of Pittsburgh, the University of Zagreb, and the Texas Medical Center in Houston. The PI is a woman, and active recruitment of minorities and women to participate in this research is proposed.
许多应用中都会出现流固耦合 (FSI) 问题。众所周知的例子是气动弹性和生物流体。在生物流体应用中,例如研究血流和心血管组织之间的相互作用,流体和相对较轻的结构之间的耦合是高度非线性的,需要复杂的想法来研究其解决方案。在血流应用中,由于主动脉壁由多层组成,每层具有不同的机械特性,这一事实进一步加剧了问题。迄今为止,还没有分析结构由多个不同层组成的流固耦合问题的解决方案的结果。这项研究在这个方向上迈出了第一步,提出了一个程序来研究一类 FSI 问题的解的存在性,这些问题描述了多层结构与不可压缩粘性流体流动之间的相互作用,从而产生了完全耦合的非线性移动边界流体-多结构相互作用问题。该分析依赖于一种新颖的、松耦合的、分区的、时间推进的数值方案,以及新颖的紧致性论证,该论证提供了数值方案对非线性流体-多层结构相互作用问题的弱解的收敛性。拟议的计划在 FSI 问题领域开辟了一个新领域。这项工作揭示了一些以前没有研究过的特征。特别是,这项工作揭示了 FSI 问题中的一种新的正则化机制,这是由于存在质量的流固界面。流体-结构界面的惯性使整个 FSI 解决方案的演化规律化。这是一项令人兴奋的新颖研究,需要开发由重要的生物应用(血流与人体动脉壁之间的相互作用)推动的原始数学技术。众所周知,动脉壁由多层组成,每层具有不同的机械特性和厚度。每个心动周期期间动脉壁的搏动对人类心血管系统的健康生理和病理生理有显着影响。然而,不同动脉壁层之间的相互作用以及它们与血流的相互作用仍不完全清楚。例如,超声波散斑跟踪方法的最新发展揭示了在高肾上腺素情况下动脉壁不同层之间存在显着的剪切应变。这种现象对心血管疾病发生的影响尚不清楚。本研究通过设计数学模型,并分析数学模型的解,在动脉壁建模为多层结构的情况下,捕获血流与动脉壁之间的流固相互作用,从而朝这个方向迈出了一步。迄今为止,该领域还没有任何数学成果,而这项研究开辟了流固耦合问题领域的新领域。这里提出的工作有望在休斯顿大学、匹兹堡大学、萨格勒布大学和休斯顿德克萨斯医学中心之间建立强有力的合作伙伴关系。 PI 为女性,建议积极招募少数族裔和女性参与本研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suncica Canic其他文献

Suncica Canic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suncica Canic', 18)}}的其他基金

Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
  • 批准号:
    2247000
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
  • 批准号:
    2011319
  • 财政年份:
    2020
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
  • 批准号:
    1853340
  • 财政年份:
    2019
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Continuing Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
  • 批准号:
    1613757
  • 财政年份:
    2016
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
  • 批准号:
    1318763
  • 财政年份:
    2013
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
  • 批准号:
    1263572
  • 财政年份:
    2013
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Continuing Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
  • 批准号:
    1109189
  • 财政年份:
    2011
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
  • 批准号:
    1015002
  • 财政年份:
    2010
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
Moving-boundary problems in blood flow
血流的移动边界问题
  • 批准号:
    0806941
  • 财政年份:
    2008
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling the Growth and Adhesion of Auricular Chondrocytes Under Controlled Flow Conditions
合作研究:模拟受控流动条件下耳廓软骨细胞的生长和粘附
  • 批准号:
    0443826
  • 财政年份:
    2005
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Research Grant
Multi-layered decoding and therapeutic co-option of the metastatic checkpoint in human colorectal cancer
人类结直肠癌转移检查点的多层解码和治疗选择
  • 批准号:
    23K27677
  • 财政年份:
    2024
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of multi-layered omics analysis for mitochondrial disease patients
线粒体疾病患者多层组学分析的建立
  • 批准号:
    23H00424
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Multi-layered bacterial genome defences: linking molecular mechanisms to bacteria-MGE conflicts in single cells, populations, and communities.
多层细菌基因组防御:将分子机制与单细胞、群体和群落中的细菌-MGE 冲突联系起来。
  • 批准号:
    BB/X003051/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Research Grant
clarifying the multi-layered factors needed in promoting inclusive education for children with low incidence disabilities
明确促进低残疾率儿童全纳教育所需的多层次因素
  • 批准号:
    23K02204
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pioneering a non-destructive investigation method for multi-layered stone structures utilizing the permeability of cosmic ray muons
首创利用宇宙射线μ介子渗透性对多层石结构进行无损检测的方法
  • 批准号:
    23K17276
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Reconstruction of the 'Borders' of Post-War Japan: Its Multi-Layered Legal Structure
战后日本“边界”的重建:多层法律结构
  • 批准号:
    23K17538
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Multi-layered decoding and therapeutic co-option of the metastatic checkpoint in human colorectal cancer
人类结直肠癌转移检查点的多层解码和治疗选择
  • 批准号:
    23H02986
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research and development of new risk assessment methods using analysis of multi-layered omics datasets for precision medicine of common diseases
利用多层次组学数据集分析常见疾病精准医疗风险评估新方法的研发
  • 批准号:
    23H03145
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of High thermoelectric properties by displacement modulation relaxation of multi-layered misfit cobaltate oxide
通过多层错配氧化钴的位移调制弛豫创造高热电性能
  • 批准号:
    23K04903
  • 财政年份:
    2023
  • 资助金额:
    $ 20.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了