Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
基本信息
- 批准号:1318763
- 负责人:
- 金额:$ 28.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid-structure interaction (FSI) problems arise in many applications. They include multi-physics problems in engineering such as aeroelasticity and propeller turbines, as well as biofluidic application such as self-propulsion organisms, fluid-cell interactions, and the interaction between blood flow and cardiovascular tissue. A comprehensive study of these problems remains to be a challenge due to their strong nonlinearity and multi-physics nature. To make things worse, in many biological applications the structure is composed of several layers, each with different mechanical characteristics. This is, for example, the case with arterial walls. A FSI solver that simulates the interaction between an incompressible, viscous fluid and a multi-layered structure would be an indispensable tool for the computational studies of this class of problems. To date, there are no such FSI solvers for hemodynamics, and the work proposed here makes a first step in this direction. The investigators are developing a set of stable loosely-coupled partitioned schemes for solving a class of nonlinear moving boundary, fluid-multi-structure interaction problems. The proposed schemes are based on a novel implementation of the Lie operator splitting, which is designed in such a way that the energy of the discretized problem mimics the energy of the continuous problem. The proposed program opens up a new field within the area of FSI problems, bringing to light several new features that have not been studied before, such as the study of the regularizing effects of fluid-structure interfaces with mass. The proposed class of schemes will be implemented and optimized for high performance computing using an open source library of solvers called LifeV. This will make the products of this research accessible to a large set of users involving a broad range of applications.This is an exciting, novel study requiring the development of original mathematical and computational techniques motivated by important applications in cardiovascular flow. The investigators are developing a computational software that will, for the first time, capture the interaction between different layers of the human arterial walls as they interact with pulsating blood flow. This study is motivated by the most recent advances in ultrasound speckle tracking methods, which reveal that in high adrenaline situations, there is significant strain between different layers within arterial walls. It has been noted that the role of this phenomenon in the development of cardiovascular disease has not been explored yet. The computational models developed in this study will provide an indispensable tool for the study of the influence of this phenomenon on the physiology and pathophysiology of the human cardiovascular system. The results from this research will have impact across different scientific disciplines through an open source code, which will be freely available to users. The work proposed here promises to develop a strong partnership between the University of Houston, the University of Pittsburgh, Emory University, and the Texas Medical Center in Houston. The broader impacts will be further achieved through student education, mentoring of students and junior faculty, and organization of interdisciplinary conferences/workshops. Both investigators are women with a track record in education and mentoring women and minorities, and this practice will continue throughout this project.
流固耦合问题在很多应用中都会出现。它们包括工程中的多物理问题,如气动弹性和螺旋桨涡轮机,以及生物流体应用,如自推进生物体,流体细胞相互作用以及血流和心血管组织之间的相互作用。 由于这些问题的强非线性和多物理场性质,对其进行全面的研究仍然是一个挑战。更糟糕的是,在许多生物应用中,这种结构由几层组成,每层都有不同的机械特性。例如,动脉壁就是这种情况。一个流固耦合求解器,模拟不可压缩,粘性流体和多层结构之间的相互作用将是这类问题的计算研究的一个不可缺少的工具。到目前为止,还没有这样的FSI求解器的血液动力学,这里提出的工作在这个方向上迈出了第一步。研究人员正在发展一套稳定的松耦合分区格式,用于求解一类非线性动边界、流体-多结构相互作用问题。所提出的方案是基于一种新的实现的李算子分裂,这是设计在这样一种方式,离散化问题的能量模仿的能量的连续问题。 该计划开辟了一个新的领域内的FSI问题的区域内,带来了几个新的功能,没有被研究过,如流体结构界面与质量的正则化效果的研究。所提出的一类计划将被实施和优化的高性能计算使用一个开源库的求解器称为LifeV。这将使本研究的产品可供涉及广泛应用的大量用户使用。这是一项令人兴奋的新颖研究,需要开发原始的数学和计算技术,其动机是心血管血流中的重要应用。研究人员正在开发一种计算软件,该软件将首次捕获人体动脉壁不同层与脉动血流相互作用时的相互作用。这项研究的动机是超声斑点跟踪方法的最新进展,该方法揭示了在高肾上腺素的情况下,动脉壁内不同层之间存在显着的应变。已经注意到,这种现象在心血管疾病发展中的作用尚未被探索。本研究开发的计算模型将为研究这种现象对人类心血管系统生理和病理生理的影响提供不可或缺的工具。这项研究的结果将通过开源代码对不同的科学学科产生影响,这些代码将免费提供给用户。这里提出的工作承诺在休斯顿大学,匹兹堡大学,埃默里大学和休斯顿德克萨斯医学中心之间建立强有力的伙伴关系。更广泛的影响将进一步通过学生教育,学生和初级教师的辅导,跨学科会议/研讨会的组织实现。两名调查员都是在教育和指导妇女和少数民族方面有记录的妇女,这种做法将在整个项目中继续下去。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Second‐order, loosely coupled methods for fluid‐poroelastic material interaction
- DOI:10.1002/num.22452
- 发表时间:2019-12
- 期刊:
- 影响因子:3.9
- 作者:Oyekola Oyekole;M. Bukač
- 通讯作者:Oyekola Oyekole;M. Bukač
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suncica Canic其他文献
Suncica Canic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suncica Canic', 18)}}的其他基金
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
- 批准号:
2247000 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
- 批准号:
2011319 - 财政年份:2020
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
- 批准号:
1853340 - 财政年份:2019
- 资助金额:
$ 28.09万 - 项目类别:
Continuing Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
- 批准号:
1613757 - 财政年份:2016
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
- 批准号:
1263572 - 财政年份:2013
- 资助金额:
$ 28.09万 - 项目类别:
Continuing Grant
Fluid-multi-layered-structure interaction problems
流体-多层结构相互作用问题
- 批准号:
1311709 - 财政年份:2013
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
- 批准号:
1109189 - 财政年份:2011
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
- 批准号:
1015002 - 财政年份:2010
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Moving-boundary problems in blood flow
血流的移动边界问题
- 批准号:
0806941 - 财政年份:2008
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Collaborative Research: Modeling the Growth and Adhesion of Auricular Chondrocytes Under Controlled Flow Conditions
合作研究:模拟受控流动条件下耳廓软骨细胞的生长和粘附
- 批准号:
0443826 - 财政年份:2005
- 资助金额:
$ 28.09万 - 项目类别:
Continuing Grant
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
- 批准号:31670742
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
- 批准号:
2338313 - 财政年份:2024
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
- 批准号:
2320875 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Fluid Structure Interaction for Applications in Mathematical Biology.
流体结构相互作用在数学生物学中的应用。
- 批准号:
2883565 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Studentship
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
- 批准号:
2227496 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
- 批准号:
2309606 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
- 批准号:
2309630 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Standard Grant
Fluid-structure interaction measurements of complex structures
复杂结构的流固耦合测量
- 批准号:
2874518 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Studentship
Modelling the Effects of Fluid-Structure Dynamic Interaction on Aquatic Plants
模拟流固动力相互作用对水生植物的影响
- 批准号:
2786466 - 财政年份:2023
- 资助金额:
$ 28.09万 - 项目类别:
Studentship
High-order Geometry, Mesh and Adaptivity for Fluid-Structure Interaction Simulations
流固耦合仿真的高阶几何、网格和自适应性
- 批准号:
RGPIN-2020-06327 - 财政年份:2022
- 资助金额:
$ 28.09万 - 项目类别:
Discovery Grants Program - Individual
Investigation of mechanism for fluid–structure interaction on turbulence flow using high-performance computing system
流体机理研究
- 批准号:
22K03461 - 财政年份:2022
- 资助金额:
$ 28.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)