A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
基本信息
- 批准号:1015002
- 负责人:
- 金额:$ 15.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in mathematical biology and medical research are characterized by the presence of moving interfaces that may have a complex shape and undergo topological changes. The goal of this project is the development of an adaptive variational level set method for numerical simulation of such problems. A major challenge is the need to maintain the signed distance property of the convected level set function and guarantee mass conservation for incompressible flows. In existing level set methods, these constraints are commonly enforced at a postprocessing step when an irrecoverable damage has already been done. In the proposed finite element formulation, numerical solutions are constrained using Lagrange multipliers in the variational formulation for the Galerkin finite element method. This eliminates the need for postprocessing and the associated numerical errors. Algebraic flux correction is performed to satisfy the discrete maximum principle and secure nonlinear stability of the constrained problem. The result is a high-resolution finite element scheme that preserves all important properties of the exact solution. A further gain of accuracy is achieved with a new mesh adaptation strategy that combines local mesh refinement/coarsening with Arbitrary Lagrangian Eulerian (ALE) displacement of nodes.This interdisciplinary research will help scientists and medical doctors to gain a better understanding of fluid flows that take place in human body. Computer simulations are feasible for almost every part of the cardiovascular system, and multiple experiments can be performed without causing any hazard to the patient. However, the usefulness of information obtained in this way depends on the accuracy of the employed numerical methods. It is easy to develop a code that produces beautiful colorful pictures but it is difficult to guarantee that the results are quantitatively correct, especially for the class of free boundary problems considered in this project. It is not unusual that numerical solutions exhibit spurious oscillations, or a spontaneous loss of mass is observed. To make matters worse, other departures from physical reality may remain unnoticed and lead to wrong decisions regarding the appropriate medical treatment. The proposed methodology is designed to rule out such situations. The revised level set method is backed by mathematical theory and has a number of unique features which make it possible to capture the deformation and motion of evolving interfaces with high precision. This research paves the way to reliable simulation of drug delivery, tumor growth, and other biological processes.
数学、生物学和医学研究中的许多问题都是以运动界面的存在为特征的,这些运动界面可能具有复杂的形状并经历拓扑变化。该项目的目标是开发一种用于此类问题的数值模拟的自适应变分水平集方法。一个主要的挑战是需要保持对流水平集函数的符号距离性质,并保证不可压缩流动的质量守恒。在现有的水平集方法中,这些约束通常是在已经造成不可恢复的损害的后处理步骤中强制实施的。在所提出的有限元格式中,数值解使用Galerkin有限元的变分格式中的拉格朗日乘子来约束。这消除了后处理和相关的数值误差的需要。为了满足离散极大值原理和约束问题的安全非线性稳定性,进行了代数磁通校正。其结果是一个高分辨率的有限元格式,它保留了精确解的所有重要性质。新的网格自适应策略将局部网格细化/粗化与节点的任意拉格朗日欧拉(ALE)位移相结合,进一步提高了精度。这一跨学科的研究将帮助科学家和医生更好地了解发生在人体内的流体流动。计算机模拟对心血管系统的几乎每个部分都是可行的,而且可以进行多次实验,而不会对患者造成任何危险。然而,以这种方式获得的信息的有用性取决于所采用的数值方法的准确性。开发一个生成漂亮的彩色图片的代码很容易,但很难保证结果在数量上是正确的,特别是对于本项目中考虑的一类自由边界问题。数值解出现虚假振荡或自发质量损失的情况并不少见。更糟糕的是,其他偏离实际情况的情况可能仍未被注意到,并导致关于适当医疗的错误决定。拟议的方法旨在排除这种情况。修正的Level Set方法以数学理论为基础,具有许多独特的特征,使其能够高精度地捕捉不断演变的界面的变形和运动。这项研究为可靠地模拟药物输送、肿瘤生长和其他生物过程铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suncica Canic其他文献
Suncica Canic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suncica Canic', 18)}}的其他基金
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
- 批准号:
2247000 - 财政年份:2023
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
- 批准号:
2011319 - 财政年份:2020
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
- 批准号:
1853340 - 财政年份:2019
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
- 批准号:
1613757 - 财政年份:2016
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
- 批准号:
1318763 - 财政年份:2013
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
- 批准号:
1263572 - 财政年份:2013
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
Fluid-multi-layered-structure interaction problems
流体-多层结构相互作用问题
- 批准号:
1311709 - 财政年份:2013
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
- 批准号:
1109189 - 财政年份:2011
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Moving-boundary problems in blood flow
血流的移动边界问题
- 批准号:
0806941 - 财政年份:2008
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Collaborative Research: Modeling the Growth and Adhesion of Auricular Chondrocytes Under Controlled Flow Conditions
合作研究:模拟受控流动条件下耳廓软骨细胞的生长和粘附
- 批准号:
0443826 - 财政年份:2005
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of new finite element models to predict the dynamic behavior of shells subjected to flowing fluids
开发新的有限元模型来预测流动流体作用下的壳体的动态行为
- 批准号:
RGPIN-2021-03273 - 财政年份:2022
- 资助金额:
$ 15.7万 - 项目类别:
Discovery Grants Program - Individual
Development of new finite element models to predict the dynamic behavior of shells subjected to flowing fluids
开发新的有限元模型来预测流动流体作用下的壳体的动态行为
- 批准号:
RGPIN-2021-03273 - 财政年份:2021
- 资助金额:
$ 15.7万 - 项目类别:
Discovery Grants Program - Individual
New Finite Element Techniques for Simulating Flows and Waves
用于模拟流动和波浪的新有限元技术
- 批准号:
1912779 - 财政年份:2019
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
A new gait analysis using muscle exertion tension and finite element analysis in severe knee osteoarthritis
使用肌肉用力张力和有限元分析对严重膝骨关节炎进行新的步态分析
- 批准号:
16K01515 - 财政年份:2016
- 资助金额:
$ 15.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Interval Finite Element Approach for Structural System Identification and Damage Detection under Uncertainty
不确定性下结构系统识别和损伤检测的新区间有限元方法
- 批准号:
1634483 - 财政年份:2016
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Investigation of mechanisms of structural bone degeneration using new structural index for trabecular bone and finite element method in patients with type 2 diabetes
利用新的骨小梁结构指数和有限元方法研究2型糖尿病患者结构性骨退变的机制
- 批准号:
15K19286 - 财政年份:2015
- 资助金额:
$ 15.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
New generation finite element methods for seismic forward modelling
用于地震正演模拟的新一代有限元方法
- 批准号:
NE/G012628/1 - 财政年份:2010
- 资助金额:
$ 15.7万 - 项目类别:
Training Grant
New techniques in characteristic finite element methods for flow problems
流动问题特征有限元方法新技术
- 批准号:
0915253 - 财政年份:2009
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
A New Real-Space Finite Element Method to Solve the Kohn-Sham Equations of Density Functional Theory
求解密度泛函理论Kohn-Sham方程的新实空间有限元方法
- 批准号:
0811025 - 财政年份:2008
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Development of New Features for the PyLith Finite Element Code to Enable Innovative Research In Multiple Earthquake Cycle Simulations
开发 PyLith 有限元代码的新功能,以实现多地震周期模拟中的创新研究
- 批准号:
0745391 - 财政年份:2008
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant