Development of Mathematical Methods for Next Generation Stent Design
下一代支架设计数学方法的开发
基本信息
- 批准号:1853340
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses a comprehensive development of mathematical methods for next generation stent design. Stents are mesh-like tubes which are used to prop diseased arteries open. Several generations of stents have been designed to date. The currently used stents are drug eluting stents, and new generations of bare metal stents. Despite the beneficial effects of stenting, persistent high rates of complications such as in-stent restenosis and late stent thrombosis call for novel approaches to stent design. Recent ideas based on nano-engineered stents seem to be particularly promising. They include: (1) nano-engineered stents, which are stents covered with nano-engineered surface that promotes accelerated restoration of functional endothelium and provides a drug-free approach to keeping stents patent long-term; and (2) ferromagnetic stents with magnet-enhanced nano-particle drug delivery of anti-thrombogenic drugs for improved arterial wall healing. This project will addresses the development of new mathematical methods to guide and aid the bioengineering design of next generation stents. The methods are based on partial differential equations, particle-base kinetic methods, and artificial intelligence-based optimization methods. The mathematical and computational results will be experimentally tested in the Therapeutic Microtechnology and Nanotechnology Lab at UCSF. Two students and a postdoc will be involved in the project, and topics from this research will be presented in a new, interdisciplinary class at UC Berkeley, cross-listed in three different departments (Mathematics, Bioengineering, and Mechanical Engineering). Special attention will be paid to organizing a Summer Workshop for High School Girls, and to promoting inclusion of women in STEM research.This project addresses the development of a unified platform for interdisciplinary, synergistic approaches to next generation stent design based on novel mathematical, computational, bioengineering, and experimental methods. The mathematical methods combine macro-scale and micro(nano)-scale approaches to the modeling of: (1) nanoengineered stents' surfaces covered with engineered nano-tube arrays; (2) ferromagnetic nano-particle drug delivery; (3) optimal design of stent's topology, geometry, and mechanical properties to minimize arterial tissue injury; and (4) design of coating strategies for drug-eluting stents. The mathematical models will be combined with high performance computing, and with experimental validation in the Therapeutic Microtechnology and Nanotechnology Lab at UCSF. The mathematical methods include a fluid-structure interaction model involving multi-layered poroelastic media to model arterial walls, a dimension reduction-based 1D hyperbolic net model describing stents' geometric and mechanical properties, and a ferromagnetic nano-particle fluid-structure interaction model. The computational methods will be based on a combination of Finite Element Method approximations of the macro-scale continuum models, and on Smoothed Particle Hydrodynamics approximations of the micro/nano-scale particle models. Uncertainty Quantification and Artificial Intelligence (Deep Neural Networks) will be used to study solution dependence on the parameters in the problem, and to study optimal stent design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于为下一代支架设计全面发展数学方法。支架是一种网状管,用来支撑病变的动脉开放。到目前为止,已经设计了几代支架。目前使用的支架有药物洗脱支架和新一代裸金属支架。尽管支架植入术有很好的效果,但支架内再狭窄和晚期支架血栓等并发症的发生率持续较高,这就要求采用新的支架设计方法。最近基于纳米工程支架的想法似乎特别有希望。它们包括:(1)纳米工程支架,即覆盖有纳米工程表面的支架,促进功能性内皮的加速恢复,并提供一种使支架长期保持专利的无药物方法;以及(2)具有磁性增强的纳米颗粒药物输送的铁磁性支架,以改善动脉壁愈合。该项目将致力于开发新的数学方法来指导和帮助下一代支架的生物工程设计。这些方法是基于偏微分方程组、基于粒子的动力学方法和基于人工智能的优化方法。数学和计算结果将在加州大学旧金山分校的治疗微技术和纳米技术实验室进行实验测试。两名学生和一名博士后将参与这个项目,这项研究的主题将在加州大学伯克利分校一个新的跨学科课程中展示,该课程交叉列出了三个不同的系(数学、生物工程和机械工程)。将特别注意为高中女生组织夏季研讨会,并促进妇女参与STEM研究。该项目致力于开发一个统一的平台,用于基于新的数学、计算、生物工程和实验方法的下一代支架设计的跨学科、协同方法。这些数学方法结合了宏观和微观(纳米)尺度的方法来建模:(1)纳米工程支架表面覆盖着工程纳米管阵列;(2)铁磁性纳米颗粒药物输送;(3)支架的拓扑、几何形状和机械性能的优化设计,以将动脉组织损伤降至最低;以及(4)药物洗脱支架的涂层策略设计。数学模型将与高性能计算相结合,并与加州大学旧金山分校治疗微技术和纳米技术实验室的实验验证相结合。数学方法包括用于模拟动脉壁的多层多孔弹性介质的流固耦合模型、描述支架几何和力学性质的基于降维的一维双曲线网模型和铁磁纳米颗粒流固耦合模型。计算方法将基于宏观尺度连续介质模型的有限元近似和微/纳米尺度颗粒模型的平滑粒子流体力学近似。不确定性量化和人工智能(深度神经网络)将被用来研究解决方案对问题中参数的依赖,并研究最优支架设计。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational Mathematical Analysis Of Different Stent Geometries And Arterial Wall Response In Tortuous Coronary Artery
弯曲冠状动脉中不同支架几何形状和动脉壁反应的计算数学分析
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:37.8
- 作者:Canic, Suncica;Wang, Yifan;Paniagua, David;Ramirez, Jonanlis;Paniagua, Lizy;Quezada, Raymundo;Jneid, Hani;Denktas, Ali;Paniagua, David
- 通讯作者:Paniagua, David
Well-Posedness of Solutions to Stochastic Fluid–Structure Interaction
- DOI:10.1007/s00021-023-00839-y
- 发表时间:2022-03
- 期刊:
- 影响因子:1.3
- 作者:Jeffrey Kuan;S. Čanić
- 通讯作者:Jeffrey Kuan;S. Čanić
Multilayered Poroelasticity Interacting with Stokes Flow
多层孔隙弹性与斯托克斯流相互作用
- DOI:10.1137/20m1382520
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Bociu, Lorena;Canic, Sunčica;Muha, Boris;Webster, Justin T.
- 通讯作者:Webster, Justin T.
Analysis of a 3D nonlinear moving boundary problem describing fluid-mesh-sell interaction
描述流体-网格-销售相互作用的 3D 非线性移动边界问题的分析
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Suncica Canic, Marija Galic
- 通讯作者:Suncica Canic, Marija Galic
New Mathematics for Next Generation Stent Design
下一代支架设计的新数学
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Canic, Suncica
- 通讯作者:Canic, Suncica
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suncica Canic其他文献
Suncica Canic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suncica Canic', 18)}}的其他基金
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
- 批准号:
2247000 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
A Computational Approach to the Design of a Bioartificial Pancreas
生物人工胰腺设计的计算方法
- 批准号:
2011319 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
- 批准号:
1613757 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fluid-structure interaction with multi-layered structures: a new class of partitioned schemes
多层结构的流固耦合:一类新的分区方案
- 批准号:
1318763 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fluid-multi-layered-structure interaction problems
流体-多层结构相互作用问题
- 批准号:
1311709 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling
合作研究:通过数学建模推进二尖瓣反流的诊断和量化
- 批准号:
1263572 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Coanda Effect for Incompressible Flows in Moving Domains
运动域中不可压缩流动的康达效应
- 批准号:
1109189 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A New Finite Element Formulation of the Level Set Method for Free Boundary Problems
自由边界问题水平集法的新有限元公式
- 批准号:
1015002 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Modeling the Growth and Adhesion of Auricular Chondrocytes Under Controlled Flow Conditions
合作研究:模拟受控流动条件下耳廓软骨细胞的生长和粘附
- 批准号:
0443826 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of mathematical foundation for methods of neuronal activity data analysis
神经元活动数据分析方法的数学基础的发展
- 批准号:
23K10978 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of complex moment-based methods and mathematical risk avoidance techniques for infinite dimensional eigenvalue problems
针对无限维特征值问题开发复杂的基于矩的方法和数学风险规避技术
- 批准号:
21H03451 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of teaching methods for university mathematics education under the concept of advanced mathematical literacy
高等数学素养理念下大学数学教育教学方法的发展
- 批准号:
19H01738 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a system for stress-related material development of polymer-based tribological materials by combining simple mathematical methods with artificial neural networks
通过将简单的数学方法与人工神经网络相结合,开发聚合物基摩擦材料的应力相关材料开发系统
- 批准号:
399606374 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Multiscale modelling and mathematical methods for brain development, trauma, and diseases
大脑发育、创伤和疾病的多尺度建模和数学方法
- 批准号:
EP/R020205/1 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Development of an Assessing Method for Mathematical Metacognitive Ability and Instructional Methods to Foster Applied Metacognition of Elementary School Students
数学元认知能力评估方法的开发及培养小学生应用元认知的教学方法
- 批准号:
17K04337 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Mathematical Methods and Development of Libraries for Combined and Hierarchical Autotuning
组合递阶自整定数学方法及库开发研究
- 批准号:
15H02708 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development, analysis and application of mathematical methods for Magnetic Particle Imaging (MathMPI)
磁粒子成像数学方法(MathMPI)的开发、分析和应用
- 批准号:
262269551 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Scientific Networks
SPP 1748: Reliable Simulation Techniques in Solid Mechanics - Development of Non-Standard Discretisation Methods, Mechanical and Mathematical Analysis
SPP 1748:固体力学中的可靠仿真技术 - 非标准离散化方法、力学和数学分析的开发
- 批准号:
237201391 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes