Nonlinear Control Problems for Rest-to-Rest Maneuvers of Multi-Body Vehicles using Prismatic Actuators
使用棱柱形执行器的多体车辆间歇操纵的非线性控制问题
基本信息
- 批准号:0244977
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-04-15 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARYPage AThis proposal describes a novel research program on nonlinear control of multi-bodyvehicles operating under the action of gravitational forces and control forces generatedby prismatic actuators. Multi-body vehicles are mechanical systems consisting of a rigidbase body that can translate and rotate in three dimensions and auxiliary bodies that areconstrained to move relative to the base body and to one another. The multi-body vehiclesare controlled using prismatic actuator devices, mounted on the base body. These arelinear electromechanical actuators that move a proof mass along a track fixed to the basebody. This is a novel actuation technology that has great potential for providing newmaneuvering capabilities, namely precision translation and global attitude maneuvers, formulti-body vehicles. On the other hand, the design and operation of such multi-bodyvehicles present many challenges since they are not fully actuated in the sense that thereare fewer control inputs than there are degrees of freedom to be controlled. Key aspectsof the proposed research, from which arise the major research challenges, are: (1) thepresence of controlled mechanical symmetries and their associated integrals of motion and(2) the objective of achieving arbitrary rest to rest maneuvers for the multi-bodyvehicles.Although some nonlinear control problems for multi-body mechanical systems are relativelysimple, the problems posed in this research can not be adequately handled based on thecurrent state of knowledge. The proposed research is the culmination of the NSF supportedresearch of the principal investigator over the last fourteen years. It represents anextension of his previous research on nonlinear control of constrained and underactuatedmechanical systems to new problems that have not previously been amenable to study usingtraditional nonlinear control methods. The expected contributions of the proposedresearch are: (1) the development of nonlinear control theory for the class of multi-bodyvehicles studied, (2) the development of innovative new system design and controlstrategies for multi-body vehicles, and (3) educational impacts through studentparticipation in the research. The research concepts are to be applied to maneuveringvehicles operating in space or under water, and they are ideally suited for small-scaleintelligent autonomous sensor systems operating in space or under water. The proposedresearch has the potential to provide new and enhanced maneuvering capabilities formulti-body vehicles, thereby contributing to the overall engineering infrastructure intransportation, exploration, remote sensing, and surveillance.
本方案描述了一种新的多体车辆的非线性控制研究方案,该方案在重力和由棱镜致动器产生的控制力的作用下运行。多体车辆是由能够在三维空间中平移和旋转的刚基体和受约束的相对于基体和彼此运动的辅助体组成的机械系统。多体车辆使用安装在底座上的棱柱式致动器装置进行控制。这些非线性机电执行器沿固定在底座上的轨道移动校验块。这是一种新的驱动技术,具有很大的潜力为多体飞行器提供新的机动能力,即精确平移和全局姿态机动。另一方面,这种多体车辆的设计和操作提出了许多挑战,因为它们不是完全驱动的,因为控制输入比要控制的自由度少。提出的主要研究挑战是:(1)受控机械对称性及其运动积分的存在和(2)实现多体车辆任意静止到静止机动的目标。尽管多体机械系统的一些非线性控制问题相对简单,但基于当前的知识状态,本研究提出的问题不能很好地处理。这项拟议的研究是美国国家科学基金会资助的首席研究员在过去14年中所做研究的高潮。它代表了他以前对约束和欠驱动机械系统的非线性控制的研究的扩展,到以前不能用传统的非线性控制方法来研究的新问题。这项研究的预期贡献是:(1)为所研究的多体车辆类别发展非线性控制理论,(2)为多体车辆开发创新的系统设计和控制策略,以及(3)通过学生参与研究而产生的教育影响。研究概念将应用于在太空或水下运行的机动飞行器,它们非常适合在空间或水下运行的小规模智能自主传感器系统。拟议的研究有可能为多体车辆提供新的和增强的机动能力,从而为交通、勘探、遥感和监视方面的整体工程基础设施做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel McClamroch其他文献
Nathaniel McClamroch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel McClamroch', 18)}}的其他基金
Constrained Attitude Control of the 3D Pendulum
3D 摆的约束姿态控制
- 批准号:
0555797 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Experimentally Based Research on Nonlinear and Adaptive Attitude Control
非线性自适应姿态控制的实验研究
- 批准号:
0140053 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Nonlinear Control Problems for Underactuated Mechanical Systems
欠驱动机械系统的非线性控制问题
- 批准号:
9906018 - 财政年份:1999
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Supervisory Control for Stabilization of a Class of Nonlinear Systems
一类非线性系统稳定的监督控制
- 批准号:
9625173 - 财政年份:1996
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Control Problems for Nonholonomic Dynamic Systems
非完整动态系统的控制问题
- 批准号:
9114630 - 财政年份:1992
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Feedback Stabilization and Control of Constrained MechanicalSystems
约束机械系统的反馈稳定和控制
- 批准号:
8722266 - 财政年份:1988
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Nonlinear Optimal Control for Constrained Systems based on Inverse problems of Convex Optimization
基于凸优化反问题的约束系统非线性最优控制
- 批准号:
17K17830 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Deterministic Global Optimization for Nonlinear Optimal Control Problems
非线性最优控制问题的确定性全局优化
- 批准号:
26630194 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Robust Optimization for Robust/Nonlinear Control Problems with Nonlinear Structures
非线性结构鲁棒/非线性控制问题的鲁棒优化
- 批准号:
21560477 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A unified Approach to nonlinear optimal control problems and its numerical experiments
非线性最优控制问题的统一方法及其数值实验
- 批准号:
21560472 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linear programming approach to nonlinear deterministic and stochastic control problems: perturbations methods and numerical analysis
非线性确定性和随机控制问题的线性规划方法:扰动方法和数值分析
- 批准号:
LX0881972 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Linkage - International
Duality, singular perturbations and numerical analysis in infinite dimensional linear programming problems related to problems of control of nonlinear dynamical systems
与非线性动力系统控制问题相关的无限维线性规划问题的对偶性、奇异摄动和数值分析
- 批准号:
DP0986696 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
RESEARCH OF OPTIMAL CONTROL AND PARAMETER IDENTIFICATION PROBLEMS FOR NONLINEAR EVOLUTION EQUATIONS
非线性演化方程最优控制及参数辨识问题的研究
- 批准号:
19540216 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic Representation Problems for Optimal Control and Nonlinear Models for Illiquid Financial Markets
非流动性金融市场最优控制的随机表示问题和非线性模型
- 批准号:
0505021 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant