New problems in nonlinear control
非线性控制的新问题
基本信息
- 批准号:0807420
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will pursue some new directions in the area of control and differential games. Three main topics will be investigated: (i) Nash equilibrium solutions in feedback form, for non-cooperative differential games. These will be studied by looking at the system of Hamilton-Jacobi equations for the value functions, and using a homotopy approach to connect solutions of the differential game to the solution of a corresponding optimal control problem. (ii) The control of mechanical systems by means of active constraints. In particular, it is proposed to study the issues of global controllability, optimal control, and the asymptotic stabilization to an equilibrium position. (iii) A new mathematical model describing the spreading of a wild fire in terms of a differential inclusion. It is here assumed that fire propagation can be stopped by constructing barriers, in real time, along rectifiable curves in the plane. In this connection the existence and the properties of optimal strategies, which minimize the total area of the burned region, will be investigated.The research on differential games will specifically focus on price-inventory games, providing a better understanding of what should the ?rational strategies? be in a competitive economic situation, where different groups of producers and consumers try to manipulate the market to their own advantage. The study of mechanical systems is primarily motivated by applications to swim-like motion in fluids. Maneuverability and optimal strokes for a swimmer that achieves locomotion by periodically changing its body shape will be investigated. Finally, the analysis of fire propagation models will provide indications on how to optimally manage fire-fighting resources in real time, in the presence of a forest fire advancing along a large front.
这项研究将在控制和微分对策领域寻求一些新的方向。三个主要议题将被调查:(一)反馈形式的纳什均衡解,非合作微分对策。这些将通过研究价值函数的Hamilton-Jacobi方程系统,并使用同伦方法将微分博弈的解与相应的最优控制问题的解联系起来。 (ii)通过主动约束对机械系统的控制。 特别是,它建议研究的问题的全局可控性,最优控制,和渐近稳定的平衡位置。 (iii)用微分包含描述野火蔓延的一个新的数学模型。这里假设,可以通过在真实的时间内,沿着平面中的可求长曲线构造障碍物来阻止火灾传播。 在这方面的存在性和最优策略,最大限度地减少总面积的烧毁区域的属性,将investigated.The研究微分对策将特别侧重于价格库存游戏,提供了一个更好的理解应该?理性的战略?在竞争激烈的经济形势下,不同的生产者和消费者群体试图操纵市场,以达到自己的利益。机械系统的研究主要是由流体中的游泳运动的应用所激发的。 本研究将探讨借由周期性地改变身体形状来达成运动的游泳者的机动性与最佳划水方式。最后,火灾传播模型的分析将提供如何最佳地管理消防资源在真实的时间,在存在的森林火灾推进沿着一个大的前线。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Bressan其他文献
High order approximation of implicitly defined maps
- DOI:
10.1007/bf01789393 - 发表时间:
1984-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-023-10250-w - 发表时间:
2023-03-05 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Markovian Solutions to Discontinuous ODEs
- DOI:
10.1007/s10884-021-09974-4 - 发表时间:
2021-03-12 - 期刊:
- 影响因子:1.300
- 作者:
Alberto Bressan;Marco Mazzola;Khai T. Nguyen - 通讯作者:
Khai T. Nguyen
Sugli atti di moto piu rigidi possibile
- DOI:
10.1007/bf02844827 - 发表时间:
1983-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Alberto Bressan - 通讯作者:
Alberto Bressan
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
- DOI:
10.1007/s13235-019-00329-9 - 发表时间:
2019-09-30 - 期刊:
- 影响因子:1.600
- 作者:
Alberto Bressan;Yilun Jiang - 通讯作者:
Yilun Jiang
Alberto Bressan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alberto Bressan', 18)}}的其他基金
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
- 批准号:
2306926 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
- 批准号:
2006884 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
- 批准号:
1411786 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
New development of the nonlinear elliptic eigenvalue probelms and inverse bifurcation problems
非线性椭圆特征值问题与逆分岔问题的新进展
- 批准号:
17K05330 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on New Fixed Point Theory and Convex Analysis
基于新不动点理论和凸分析的非线性泛函分析及非线性问题研究
- 批准号:
15K04906 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on linearized problems of nonlinear elliptic equations
非线性椭圆方程线性化问题的新进展
- 批准号:
15K04951 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
New Boundary-Value Problem Techniques for Nonlinear Wave Problems
非线性波问题的新边值问题技术
- 批准号:
1008001 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Study on the initial value problems for a new type of nonlinear dispersive wave equations
新型非线性色散波动方程初值问题研究
- 批准号:
22540228 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Career: Nonlinear Control: New Problems for Robust and Adaptive Design
职业:非线性控制:鲁棒和自适应设计的新问题
- 批准号:
9896164 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Career: Nonlinear Control: New Problems for Robust and Adaptive Design
职业:非线性控制:鲁棒和自适应设计的新问题
- 批准号:
9624386 - 财政年份:1996
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
An Engineering Foundation Conference on New Approaches to Nonlinear Problems in Dynamics, December 9-14, 1979, PacificGrove, California
关于动力学非线性问题新方法的工程基金会会议,1979 年 12 月 9 日至 14 日,加利福尼亚州 PacificGrove
- 批准号:
7907331 - 财政年份:1979
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A New Three-Dimensional Moire Technique and Its Application In Nonlinear Fracture Mechanics and Similar Design Problems
一种新的三维莫尔技术及其在非线性断裂力学和类似设计问题中的应用
- 批准号:
7802530 - 财政年份:1978
- 资助金额:
$ 20万 - 项目类别:
Standard Grant