Problems of Nonlinear Control

非线性控制问题

基本信息

  • 批准号:
    1108702
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The P.I. will study problems in the area of nonlinear control and differential games. A major focus of the research on differential games will be on Stackelberg solutions in feedback form, and on Nash equilibrium solutions in infinite time horizon. Here the main goal is to extend the theory available in linear-quadratic case, studying more general nonlinear models with robustness properties. A second main area of research is the control of set-valued evolutions. Models will be considered where the growth of a set can be influenced by a distributed control, or restrained by constructing barriers in real time. In particular, the P.I. and a collaborator will study in which cases the set can be rendered uniformly bounded for all times, and which are the optimal confinement strategies. The primary motivation for the research on differential games comes from economics. In a typical model that will be considered, the leading player--say, a government, or a central bank--announces its policy in advance, while a subordinate player--say, a private company--chooses its strategy as a best reply, in order to maximize its own profit. If the policy to be implemented makes reference to specific parameters that will be observed in the future, such as inflation or unemployment rates, determining the optimal choice for the leading player leads to challenging mathematical problems. These will be investigated within the present research. As a further direction, the study of dynamic blocking problems is motivated by models describing the spatial spreading of a forest fire, or of a chemical contamination. The optimal allocation of resources, in the containment effort, poses novel mathematical questions which will also be addressed by the present project.
P.I.将研究非线性控制和微分对策领域的问题。微分对策研究的主要焦点将是反馈形式的Stackelberg解和无限时间范围内的纳什均衡解。这里的主要目标是扩展现有的理论在线性二次的情况下,研究更一般的非线性模型具有鲁棒性。第二个主要研究领域是集值进化的控制。当一个集合的增长受到分布式控制的影响,或者被实时构建的障碍所限制时,将考虑模型。特别是,P.I.和合作者将研究在哪些情况下集合可以在所有时间内呈现一致有界,以及哪些是最优约束策略。研究微分博弈的主要动机来自经济学。在我们将要讨论的一个典型模型中,主要参与者(比如政府或中央银行)提前宣布其政策,而次要参与者(比如私营公司)选择其策略作为最佳对策,以实现自身利润最大化。如果要实施的政策引用了未来将观察到的特定参数,例如通货膨胀率或失业率,那么确定主要参与者的最佳选择将导致具有挑战性的数学问题。这些将在本研究中进行调查。作为进一步的研究方向,动态阻塞问题的研究是由描述森林火灾或化学污染的空间蔓延的模型驱动的。在遏制努力中,资源的最佳分配提出了新的数学问题,本项目也将解决这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Bressan其他文献

High order approximation of implicitly defined maps
Diffusion Approximations of Markovian Solutions to Discontinuous ODEs
Sugli atti di moto piu rigidi possibile
Markovian Solutions to Discontinuous ODEs
Self-consistent Feedback Stackelberg Equilibria for Infinite Horizon Stochastic Games
  • DOI:
    10.1007/s13235-019-00329-9
  • 发表时间:
    2019-09-30
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alberto Bressan;Yilun Jiang
  • 通讯作者:
    Yilun Jiang

Alberto Bressan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Bressan', 18)}}的其他基金

Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
  • 批准号:
    2306926
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Singularities and Error Bounds for Hyperbolic Equations
双曲方程的奇点和误差界
  • 批准号:
    2006884
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Conference on Hyperbolic Problems
双曲问题会议
  • 批准号:
    1764156
  • 财政年份:
    2018
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Models of Controlled Biological Growth
受控生物生长模型
  • 批准号:
    1714237
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Hyperbolic Conservation Laws and Applications
双曲守恒定律及其应用
  • 批准号:
    1411786
  • 财政年份:
    2014
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
New problems in nonlinear control
非线性控制的新问题
  • 批准号:
    0807420
  • 财政年份:
    2008
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws
守恒定律的双曲系统
  • 批准号:
    0505430
  • 财政年份:
    2005
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear Optimal Control for Constrained Systems based on Inverse problems of Convex Optimization
基于凸优化反问题的约束系统非线性最优控制
  • 批准号:
    17K17830
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Deterministic Global Optimization for Nonlinear Optimal Control Problems
非线性最优控制问题的确定性全局优化
  • 批准号:
    26630194
  • 财政年份:
    2014
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Robust Optimization for Robust/Nonlinear Control Problems with Nonlinear Structures
非线性结构鲁棒/非线性控制问题的鲁棒优化
  • 批准号:
    21560477
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A unified Approach to nonlinear optimal control problems and its numerical experiments
非线性最优控制问题的统一方法及其数值实验
  • 批准号:
    21560472
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Linear programming approach to nonlinear deterministic and stochastic control problems: perturbations methods and numerical analysis
非线性确定性和随机控制问题的线性规划方法:扰动方法和数值分析
  • 批准号:
    LX0881972
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Linkage - International
Duality, singular perturbations and numerical analysis in infinite dimensional linear programming problems related to problems of control of nonlinear dynamical systems
与非线性动力系统控制问题相关的无限维线性规划问题的对偶性、奇异摄动和数值分析
  • 批准号:
    DP0986696
  • 财政年份:
    2009
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Discovery Projects
New problems in nonlinear control
非线性控制的新问题
  • 批准号:
    0807420
  • 财政年份:
    2008
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RESEARCH OF OPTIMAL CONTROL AND PARAMETER IDENTIFICATION PROBLEMS FOR NONLINEAR EVOLUTION EQUATIONS
非线性演化方程最优控制及参数辨识问题的研究
  • 批准号:
    19540216
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Representation Problems for Optimal Control and Nonlinear Models for Illiquid Financial Markets
非流动性金融市场最优控制的随机表示问题和非线性模型
  • 批准号:
    0505021
  • 财政年份:
    2005
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Research of Optimal Control and Inverse Problems for Nonlinear Evolution Equations
非线性演化方程最优控制与反问题研究
  • 批准号:
    16540194
  • 财政年份:
    2004
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了