NIRT: Reversible and Directional Self-Assembly of Bio-Molecular Templates for Nanotechnology Interconnects
NIRT:用于纳米技术互连的生物分子模板的可逆定向自组装
基本信息
- 批准号:0303863
- 负责人:
- 金额:$ 122.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal focuses on the use of microtubules (MT) as templates for fabricating nanoscale interconnects, interconnect arrays, and networks. MTs are self-assembling, dynamic, and tubular shaped biomolecules with nanometer size diameters and large aspect ratios, made from polymerized tubulin proteins. Their ends are polarized in that each one exhibits unique and specific biochemical moieties. The objectives of the proposed work include establishing the scientific and technical basis for making nano-interconnects from MTs by developing end-specific capping agents to attach to the ends of the MTs, via creation of a combinatorial/phage library. Also, specific ligands to be attached to functionalized metal pads will be identified and synthesized. Attachment control and selectivity will be achieved by creating complementary molecular patterns on the ends of the ligands and capping agents using affinity group - bifunctional reagent complexes and recombinant peptide stretches. Metallization research will provide key insights into the little known area of metal biomolecular interactions with the goal of depositing thin Cu and Au coatings on the interior and/or exterior surfaces of the MTs to improve conductivity. Multiscale modeling and computer simulations will be used to guide research on molecular recognition at the ligand/cap interface and on the effects of geometric and chemical factors on the controlled assembly and disassembly of MT nano-interconnects. The objective of the educational component of the proposed NIRT is to promote the rapid insertion of individuals from under-represented groups into nanotechnology businesses. This objective will be met through the NanoTechnology Track (NTT), a course of study that integrates the scientific, engineering, and business aspects of nanotechnology. This integration emphasizes the transition between research idea and consumer product through a focus on entrepreneurship as taught by the University of Arizona's nationally renowned Berger Entrepreneurship Program. The objectives of the NIRT will be met by completion of a series of planned tasks with measurable outcomes distributed amongst the members of a highly interactive, interdisciplinary team of investigators. This team includes: J. Hoying (cell biology and biomolecular arrays, Biomedical Engineering (BME)), I. Jongewaard (phage display, peptide chemistry, Arizona Health Science Center (AHSC)), R. Guzman (polymer/biomolecule interactions, Chemical and Environmental Engr.), S. Raghavan (surface chemistry, electrochemistry, Materials Science and Engr. (MSE)), B. Zelinski (sol/gel chemistry, MSE), O. Palusinski (microelectronics, packaging and interconnections, Electrical and Computer Engineering (ECE)), P. Deymier (modeling and simulation, MSE) and L. Adamowicz (quantum and computational chemistry, Chemistry). This team will create a virtual education and research unit without traditional departmental boundaries, whose focus is to train diverse undergraduate and graduate students in the scientific and technical multi-linguism needed in today's rapidly evolving field of nanotechnology.The broader impacts resulting from the proposed activity: The broader impacts of this program revolve around moving biomolecules into the engineering arena. Natural and engineered biomolecules, including proteins, possess properties that add a new dimension to the structure/ processing/ manufacturing/ utilization paradigm, giving them a fabulous long-term potential in a vast range of engineering applications. Through this paradigm, the proposed activity will help enable the electronics industry to push feature sizes down to the nanoscale. Also, this program will establish a new educational initiative, the nanotechnology track (NTT) that will serve as a model for integrating the scientific, engineering, societal and business aspects of nanotechnology into economically sound enterprises.
该提案重点介绍了使用微管(MT)作为模板来制造纳米级的互连、互连阵列和网络。MTS是由微管蛋白聚合而成的具有纳米直径和大长宽比的自组装、动态的管状生物分子。它们的末端是极化的,因为每一个都表现出独特的和特定的生化部分。拟议工作的目标包括通过创建组合/噬菌体文库,开发末端特定的封闭剂以附着在MTS的末端,从而为从MTS制造纳米互连奠定科学和技术基础。此外,还将识别和合成要连接到功能化金属垫上的特定配体。通过使用亲和基团-双功能试剂络合物和重组多肽延伸在配体和封端剂的末端创建互补的分子图案,将实现附着控制和选择性。金属化研究将提供对鲜为人知的金属生物分子相互作用领域的关键见解,目标是在MTS的内和/或外表面沉积薄的铜和金涂层,以提高导电性。多尺度模拟和计算机模拟将被用于指导配体/帽界面的分子识别以及几何和化学因素对MT纳米互连的可控组装和拆卸的影响的研究。拟议的NIRT的教育部分的目标是促进来自代表性不足群体的个人迅速进入纳米技术企业。这一目标将通过纳米技术轨道(NTT)实现,这是一门整合了纳米技术的科学、工程和商业方面的研究课程。这种整合强调研究理念和消费产品之间的转变,通过关注创业精神,正如亚利桑那大学全国著名的伯杰创业项目所教授的那样。NIRT的目标将通过完成一系列计划任务来实现,这些任务将在高度互动的跨学科调查团队成员中分配可衡量的结果。该团队包括:J.Hoying(细胞生物学和生物分子阵列,生物医学工程(BME)),I.Jongewaard(噬菌体展示,多肽化学,亚利桑那州健康科学中心(AHSC)),R.Guzman(聚合物/生物分子相互作用,化学和环境工程),S.Raghavan(表面化学,电化学,材料科学和工程)。(MSE)),B.Zelinski(溶胶/凝胶化学,MSE),O.Palusinski(微电子、封装和互连,电气和计算机工程(欧洲经委会)),P.Deymier(建模和模拟,MSE)和L.Adamowicz(量子和计算化学,化学)。该团队将创建一个没有传统部门界限的虚拟教育和研究单位,其重点是培训不同的本科生和研究生,掌握当今快速发展的纳米技术领域所需的科学和技术多语言能力。拟议活动产生的更广泛影响:该计划的更广泛影响围绕着将生物分子转移到工程领域。天然和工程生物分子,包括蛋白质,具有为结构/加工/制造/利用范例增加新维度的特性,使它们在广泛的工程应用中具有令人难以置信的长期潜力。通过这一范例,拟议的活动将有助于电子行业将特征尺寸降低到纳米级。此外,该计划还将建立一个新的教育倡议--纳米技术轨道(NTT),作为将纳米技术的科学、工程、社会和商业方面整合到经济健全的企业中的典范。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Deymier其他文献
Pierre Deymier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Deymier', 18)}}的其他基金
New Frontiers of Sound (NewFoS) Science and Technology Center
声音新前沿(NewFoS)科技中心
- 批准号:
2242925 - 财政年份:2023
- 资助金额:
$ 122.8万 - 项目类别:
Cooperative Agreement
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204400 - 财政年份:2022
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
Student Support to 5th International Conference on Phonomic Crystals/Metamaterials, Phonon Transport/Coupling & Topological Phonomics; Tucson, Arizona; 2-7 June 2019
学生对第五届声学晶体/超材料、声子传输/耦合国际会议的支持
- 批准号:
1902900 - 财政年份:2018
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
EFRI NewLAW:: Non-reciprocal Elastic Wave Propagation in dynamically modulated Photo-elastic media
EFRI NewLAW:: 动态调制光弹性介质中的非互易弹性波传播
- 批准号:
1640860 - 财政年份:2016
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
Defect Reduction in Megasonic Cleaning, through In-Situ Characterization of Cavitation Processes using a Novel Electrochemistry based Device with Improved Time and Space Resolution
使用具有改进的时间和空间分辨率的新型电化学装置,通过对空化过程进行原位表征,减少兆声波清洗中的缺陷
- 批准号:
0925340 - 财政年份:2009
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
K-Space Multifunctional Acoustic Wave Devices
K-Space 多功能声波器件
- 批准号:
0924103 - 财政年份:2009
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
相似国自然基金
温敏不育突变体(reversible male sterile)育性转换机制的研究
- 批准号:31770348
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Fellowship
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Continuing Grant
CAREER: Robust, Reversible, and Stimuli-responsive Thermodynamic Adhesion in Hydrogels
事业:水凝胶中稳健、可逆且刺激响应的热力学粘附
- 批准号:
2337592 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
- 批准号:
2336465 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
- 批准号:
23K28429 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Sustainable Reversible Polymerisation
可持续可逆聚合
- 批准号:
DP240100121 - 财政年份:2024
- 资助金额:
$ 122.8万 - 项目类别:
Discovery Projects
Photo-responsive block copolymer that apply reversible mechanical stress to cells
向细胞施加可逆机械应力的光响应嵌段共聚物
- 批准号:
23H02030 - 财政年份:2023
- 资助金额:
$ 122.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ERI: Interphase Evolution and Electrochemical Behavior for Highly Reversible Zinc Metal Anodes
ERI:高度可逆锌金属阳极的相间演化和电化学行为
- 批准号:
2301719 - 财政年份:2023
- 资助金额:
$ 122.8万 - 项目类别:
Standard Grant