NIRT: Molecular Sensing and Actuation by CMOS Nonvolatile Charges with Independently Addressed Nanoscale Resolution

NIRT:通过 CMOS 非易失性电荷进行分子传感和驱动,具有独立寻址的纳米级分辨率

基本信息

  • 批准号:
    0304483
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

INTELLECTUAL MERITSThe purpose of this proposal is to develop nano-scale resolution of sensing and actuation between silicon CMOS devices and molecules in fluids. We will investigate the implementation of this interface by nonvolatile charges stored in lithography-pattern floating gates, self-assembled metal nanocrystals embedded in SiO2, or surface traps with scan-based direct charging. The nonvolatile charge will interact with the silicon devices in the Flash memory manner as in the commercial technology of the scan disk in digital camera and camcorders. The positive and negative nonvolatile charge will serve as attractive or repulsive receptors like remote cation and anionic ends to the molecules in fluids. We will investigate the force magnitude and resolution by different implementation strategies. We will design and conduct realistic test cases including single molecule trapping/actuation of fluorescence labeled DNA fragments, and protein recognition based on surface charge distribution instead of global properties such as size and isoelectric point. We will also investigate the influence from microfluidic device integration and autonomous operations, though a complete system design is out of our scope. We will formulate predictive modeling and simulation tool suites for equilibrium molecular structures and their movement toward a surface charge sheet in an environment mediated by the ambient ion charges in fluids. From our preceding NER work (ECS-0210743), we have preliminary experimental evidence that the goals we propose in this NIRT are practically achievable.MAJOR APPLICATIONSIn addition to the intellectual studies on the interface of silicon devices and molecules, successful implementation of this new interface concept can potentially revolutionize the biological measurements, biomedical microscopy, and pharmaceutical practices. By functionally mimicking the sensory, digestive and immune systems in biological systems with electronic receptors, new systems for molecule actuation, artificial ion channels without applying bias to fluids directly, protein recognition, and eventually biomedical treatments for cell-level diseases can be envisioned. The tight integration with present silicon technology enables affordable production in large volumes.BROADER IMPACTSNanotechnology has caused major transformation in our society. Successful interface between silicon devices and biological molecules will not only be intellectually interesting and commercially valuable, but will also have many social and legal implications. The technology developers and the general public need more overall awareness on these impacts. In addition to our existing outreach channels to penetrate nanotechnology development to K-12 and undergraduate education for broader awareness and diversified perspectives, we have formulated a realistic plan to include law school expertise to study the legal and social implications. In the beginning, the technology developers need to be educated on reasons for government regulation and the nature of risk. Test cases will then be designed collaboratively for course discussions. These materials will be assessed from pragmatic evaluations, proliferated according to the level of understanding, and then promoted to various audiences including engineering, non-engineering and high school curriculum. We will also initiate a new outreach program to Wells College (a womens college 30 miles away from Cornell main campus) in the form of exchange seminars, short intern period for general awareness, and assessment of test cases from an independent group.
智力MeritsThe这项建议的目的是开发纳米级分辨率的传感和驱动之间的硅CMOS器件和流体中的分子。我们将调查这个接口的实施非易失性电荷存储在光刻图案浮栅,自组装金属纳米晶体嵌入SiO2,或基于扫描的直接充电的表面陷阱。非易失性电荷将以闪存的方式与硅器件相互作用,如在数码相机和摄像机中的扫描盘的商业技术中。正的和负的非挥发性电荷将充当吸引或排斥受体,如流体中分子的远程阳离子和阴离子末端。我们将通过不同的实施策略来研究力的大小和分辨率。我们将设计和进行现实的测试案例,包括荧光标记的DNA片段的单分子捕获/驱动,以及基于表面电荷分布而不是全局属性(如大小和等电点)的蛋白质识别。我们还将研究微流体设备集成和自主操作的影响,尽管完整的系统设计不在我们的范围内。我们将制定预测建模和模拟工具套件的平衡分子结构和它们的运动对表面电荷片在环境中介导的周围离子在流体中的电荷。从我们以前的NER工作(ECS-0210743),我们有初步的实验证据表明,我们提出的目标,在这NIRT实际上是可实现的。MAJOR APPLICATIONSIn除了硅器件和分子的接口上的智力研究,成功地实现这一新的接口概念可能会彻底改变生物测量,生物医学显微镜,和制药的做法。通过用电子受体功能性地模拟生物系统中的感觉、消化和免疫系统,可以设想用于分子致动的新系统、不直接对流体施加偏压的人工离子通道、蛋白质识别以及最终用于细胞水平疾病的生物医学治疗。与现有硅技术的紧密结合使大批量生产成本低廉。更广泛的影响纳米技术已经引起了我们社会的重大变革。硅器件和生物分子之间的成功接口不仅在智力上有趣,而且具有商业价值,而且还具有许多社会和法律的影响。技术开发人员和公众需要对这些影响有更全面的认识。除了我们现有的外展渠道渗透纳米技术的发展,以K-12和本科教育更广泛的认识和多元化的观点,我们已经制定了一个现实的计划,包括法学院的专业知识,研究法律的和社会的影响。一开始,技术开发人员需要接受政府监管原因和风险性质的教育。然后将为课程讨论协作设计测试用例。这些材料将通过务实评估进行评估,根据理解水平进行扩散,然后推广给包括工程、非工程和高中课程在内的各种受众。我们还将启动一个新的外展计划,以威尔斯学院(一所女子学院,距离康奈尔大学主校区30英里)的形式,交流研讨会,短期实习期的一般认识,并评估测试案例,从一个独立的小组。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edwin Kan其他文献

Edwin Kan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edwin Kan', 18)}}的其他基金

RF infrasonics for internal tissue characteristics
用于内部组织特性的射频次声波
  • 批准号:
    2211634
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
NSF: CCSS: Precision Positioning for Structural Monitoring by Embedded RFID Tags
NSF:CCSS:嵌入式 RFID 标签进行结构监控的精确定位
  • 批准号:
    1945918
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RAPID: Screening and Prognosis of COVID-19 by a Novel RF Stethoscope
RAPID:通过新型射频听诊器筛查和预测 COVID-19
  • 批准号:
    2033838
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Non-Self-Jamming Passive Telemetry with Sensor Integration
带传感器集成的无自干扰无源遥测
  • 批准号:
    0928596
  • 财政年份:
    2009
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Ultra-Low-Power Wireless Transmitter with Passive Bragg Oscillator
具有无源布拉格振荡器的超低功耗无线发射器
  • 批准号:
    0725688
  • 财政年份:
    2007
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
NER: Novel Applications Based on Attractive and Repulsive Electrostatic Forces in Nanoscale
NER:基于纳米级静电引力和排斥力的新应用
  • 批准号:
    0210743
  • 财政年份:
    2002
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Research for Mixed Signal Electronic Technologies: A Joint Initiative Between NSF and SRC: Optimal Double-Gate MOSFET Structure for Mixed-signal Circuits
混合信号电子技术研究:NSF 和 SRC 的联合倡议:混合信号电路的最佳双栅极 MOSFET 结构
  • 批准号:
    0120328
  • 财政年份:
    2001
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
PECASE: Self-assembly Processes for Practical Nano-scale Electronic Devices and Interconnect
PECASE:实用纳米级电子器件和互连的自组装工艺
  • 批准号:
    9985062
  • 财政年份:
    2000
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Sensing the gap: Expressions of crop stress from molecular to landscape scales
感知差距:从分子到景观尺度的作物胁迫表达
  • 批准号:
    MR/Y034252/1
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Fellowship
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of an integrated chemical sensor system that combines molecular filtering, concentration, and sensing functions
创建集分子过滤、浓缩和传感功能于一体的集成化学传感器系统
  • 批准号:
    22KF0075
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the molecular mechanisms of ion selectivity and sensing of Mg2+ transporters responsible for the control of the cytoplasmic Mg2+ concentration
阐明负责控制细胞质 Mg2 浓度的 Mg2 转运蛋白的离子选择性和传感的分子机制
  • 批准号:
    23H02110
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Polymer-[2]rotaxane molecular shuttles: a new class of non-covalent mechanophore for sensing cell forces
聚合物-[2]轮烷分子梭:用于传感细胞力的新型非共价机械载体
  • 批准号:
    EP/X022803/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Fellowship
Bio-Inspired Molecular Signal-Amplification Sensing
仿生分子信号放大传感
  • 批准号:
    22KJ1283
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Molecular basis of force-sensing by the keratin network
角蛋白网络力传感的分子基础
  • 批准号:
    10566716
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Super-Multiplexed Molecular Sensing in Live Cells
活细胞中的超级多重分子传感
  • 批准号:
    10714549
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Innovative Plasmonic Platforms for Advanced Molecular Sensing
用于先进分子传感的创新等离子体平台
  • 批准号:
    RGPIN-2016-04202
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Real-Time, Selective Gas Sensing in Complex Gas Compositions by Molecular Sieving via Robust Two-Dimensional Heterostructures
职业:通过稳健的二维异质结构进行分子筛分,对复杂气体成分进行实时、选择性气体传感
  • 批准号:
    2145549
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了