ALGORITHMS: Performance Programming for Advanced Cache Architectures

算法:高级缓存架构的性能编程

基本信息

  • 批准号:
    0305763
  • 负责人:
  • 金额:
    $ 39.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

The recognition of drawbacks of traditional cache hierarchies, especially for irregular applications, has led to the emergence of a new breed of processors that allow the cache hierarchy to be directly manipulated at the application level. Based on the knowledge of the application's data access behavior, "intelligent" programming can lead to dramatic performance improvements. This project will explore a new approach towards performance programming for advanced cache architectures, based on explicit memory hierarchy management at the application level. Our research will focus on: (i) Definition of a generalized model for split spatial/temporal caches and explicit cache control. This model will abstract available architecture features from a programmer's perspective. A high-level simulator based on this model will be implemented. (ii) Develop cache cognizant algorithms for regular and irregular application kernels. The kernels will be optimized to exploit spatial and temporal cache structures, data prefetch, and other features abstracted in the model. Performance improvements will be validated through low-level simulations and experiments on real architecture platforms such as Intel IA-64 and Sun UltraSPARC III Cu. (iii) Create a mathematical foundation for compile-time data placement in main memory to minimize cache misses at run time, using on Perfect Latin Squares (PLS) to reduce cache conflicts. (iv) Use the above techniques to optimize performance of algorithms used for database storage and access (search), tree traversal, unstructured mesh computations, and graph problems. We envision that our research will complement the ongoing advances in cache architectures and lead to the creation of a new computation model for programming the next generation of general-purpose processors.
人们认识到传统缓存层次结构的缺点,尤其是对于不规则应用程序,导致了新型处理器的出现,这些处理器允许在应用程序级别直接操纵该高速缓存层次结构。基于对应用程序数据访问行为的了解,“智能”编程可以显著提高性能。这个项目将探索一种新的方法,对先进的高速缓存架构的性能编程,基于显式的内存层次管理在应用程序级。 我们的研究将集中在:(i)定义一个通用的模型分割空间/时间缓存和显式缓存控制。 该模型将从程序员的角度抽象可用的体系结构特性。将实现基于该模型的高级模拟器。(ii)为常规和非常规应用程序内核开发高速缓存认知算法。 内核将进行优化,以利用空间和时间缓存结构,数据预取和模型中抽象的其他功能。 性能改进将通过在真实的架构平台(如Intel IA-64和Sun UltraCore III Cu)上进行低级模拟和实验来验证。(iii)为编译时数据在主存中的放置创建数学基础,以最大限度地减少运行时的缓存未命中,使用完美拉丁方(PLS)减少缓存冲突。(iv)使用上述技术来优化用于数据库存储和访问(搜索)、树遍历、非结构化网格计算和图形问题的算法的性能。 我们设想,我们的研究将补充正在进行的高速缓存体系结构的进步,并导致创建一个新的计算模型编程的下一代通用处理器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Prasanna其他文献

Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna
  • 通讯作者:
    Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
Guest Editorial: Computing Frontiers

Viktor Prasanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Prasanna', 18)}}的其他基金

IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
  • 批准号:
    2209563
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
  • 批准号:
    2104264
  • 财政年份:
    2021
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2119816
  • 财政年份:
    2021
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
  • 批准号:
    2027007
  • 财政年份:
    2020
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
  • 批准号:
    2009057
  • 财政年份:
    2020
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
  • 批准号:
    1911229
  • 财政年份:
    2019
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
  • 批准号:
    1912680
  • 财政年份:
    2019
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
  • 批准号:
    1643351
  • 财政年份:
    2016
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant

相似海外基金

Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    401376-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    401376-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    401376-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Semidefinite Programming Relaxation: Approximation Algorithms, Performance Analysis and Applications
半定规划松弛:近似算法、性能分析和应用
  • 批准号:
    1015346
  • 财政年份:
    2010
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Programming by optimisation: Computer-aided design of high-performance algorithms for hard combinatorial problems
优化编程:针对硬组合问题的高性能算法的计算机辅助设计
  • 批准号:
    238788-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms with High Performance Based on Semidefinite Programming
基于半定规划的高性能逼近算法
  • 批准号:
    07680370
  • 财政年份:
    1995
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了