Formal Verification of Large Sequential Systems Using Success-Driven ATPG

使用成功驱动的 ATPG 对大型顺序系统进行形式化验证

基本信息

项目摘要

The objective of this research is on developing a new concept and foundation for efficient one-step preimage computation for sets of states in large sequential circuits based on novel automatic test pattern generation (ATPG) techniques, where current binary-decision-diagram (BDD)-based approaches fail. This is by taking the advantage that ATPG engines are not vulnerable to the space explosion problem, and thus the ATPG-based techniques can be applicable to very large designs. However, computation of preimages will stretch ATPGs in a way that they were not required before - they mustreturn all solutions instead of merely one solution. In other words, even though the state-of-the-art ATPGs are efficient in finding one solution, simply making them continue to search all other solutions will result in temporal explosion, in which exponential time will be required to compute the complete preimage. To remedy this problem, a new ATPG algorithm that intelligently prunes the redundant search spaces due to overlapping solutions is needed. In doing so, this new approach can significantly accelerate the search for all solutions necessary for preimage computation. Once the building block for preimage computation can be efficiently performed, it can naturally be plugged into formal model checking and equivalence checking engines for large sequential systems. This research addresses the following relevant issues: (a) identification of previously explored spaces that contain solutions; (b) pruning of the spaces that only contain conflicts; (c) combination of multiple solutions in a compact form; and (d) iteration of the computation process to obtain preimage for multiple cycles. As this research brings about a new approach via which implicit state-space traversal can be performed, it offers an entirely new and effective dimension to the design verification arena for verifying large and complex sequential systems.
本研究的目的是开发一个新的概念和基础,有效的一步原像计算的状态集在大型时序电路的基础上,新的自动测试模式生成(ATPG)技术,目前的二进制决策图(BDD)为基础的方法失败。 这是通过利用ATPG发动机不容易受到空间爆炸问题的影响,因此基于ATPG的技术可以适用于非常大的设计。 然而,原像的计算将拉伸ATPG在某种程度上,他们不需要以前-他们必须返回所有的解决方案,而不仅仅是一个解决方案。换句话说,即使最先进的ATPG在找到一个解决方案方面是有效的,简单地使它们继续搜索所有其他解决方案将导致时间爆炸,其中计算完整的原像将需要指数时间。 为了解决这个问题,需要一种新的ATPG算法,智能修剪冗余的搜索空间,由于重叠的解决方案。 在这样做的过程中,这种新方法可以显着加快搜索所有解决方案所需的原像计算。 一旦用于原像计算的构建块可以有效地执行,它就可以自然地插入到大型时序系统的形式化模型检查和等价检查引擎中。 本研究解决了以下相关问题:(a)识别以前探索的空间,包含解决方案;(B)修剪的空间,只包含冲突;(c)组合的多个解决方案,在一个紧凑的形式;和(d)迭代的计算过程,以获得多个周期的原像。 由于这项研究带来了一种新的方法,通过它可以执行隐式状态空间遍历,它提供了一个全新的和有效的维度,验证大型和复杂的时序系统的设计验证竞技场。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hsiao其他文献

Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1α to drive lung adenocarcinoma metastasis
  • DOI:
    10.1186/s13045-019-0698-5
  • 发表时间:
    2019-01-29
  • 期刊:
  • 影响因子:
    40.400
  • 作者:
    Yi-Hua Jan;Tsung-Ching Lai;Chih-Jen Yang;Yuan-Feng Lin;Ming-Shyan Huang;Michael Hsiao
  • 通讯作者:
    Michael Hsiao
Cyclic increase in the histamine receptor H1-ADAM9-Snail/Slug axis as a potential therapeutic target for EMT-mediated progression of oral squamous cell carcinoma
组胺受体 H1-ADAM9-Snail/Slug 轴的周期性增加作为 EMT 介导的口腔鳞状细胞癌进展的潜在治疗靶点
  • DOI:
    10.1038/s41419-025-07507-1
  • 发表时间:
    2025-03-20
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Yi-Fang Ding;Kuo-Hao Ho;Wei-Jiunn Lee;Li-Hsin Chen;Feng-Koo Hsieh;Min-Che Tung;Shu-Hui Lin;Michael Hsiao;Shun-Fa Yang;Yi-Chieh Yang;Ming-Hsien Chien
  • 通讯作者:
    Ming-Hsien Chien
The Modeling and Analysis of the Apoptotic BAD/tBID/BAK Pathway as a Chemical Reaction Network
作为化学反应网络的凋亡 BAD/tBID/BAK 途径的建模与分析
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. C. Howells;W. Baumann;C. Finkielstein;Michael Hsiao;D. Lindner;D. Stilwell
  • 通讯作者:
    D. Stilwell
The miR-876-5p/SOCS4/STAT3 pathway induced the expression of PD-L1 and suppressed antitumor immune responses
  • DOI:
    10.1186/s12935-025-03704-2
  • 发表时间:
    2025-03-26
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Hsuan-Yu Peng;Yu-Li Huang;Ping-Hsiu Wu;Li-Jie Li;Bou-Yue Peng;Chia-Yu Wu;Yu-Lung Lin;Michael Hsiao;Jang-Yang Chang;Peter Mu-Hsin Chang;Hsin-Lun Lee;Wei-Min Chang
  • 通讯作者:
    Wei-Min Chang
Erratum to: E1A-Mediated Inhibition of HSPA5 Suppresses Cell Migration and Invasion in Triple-Negative Breast Cancer
  • DOI:
    10.1245/s10434-017-5769-7
  • 发表时间:
    2017-02-03
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Hsin-An Chen;Yi-Wen Chang;Chi-Feng Tseng;Ching-Feng Chiu;Chih-Chen Hong;Weu Wang;Ming-Yang Wang;Michael Hsiao;Jui-Ti Ma;Chung-Hsing Chen;Shih-Sheng Jiang;Chih-Hsiung Wu;Mien-Chie Hung;Ming-Te Huang;Jen-Liang Su
  • 通讯作者:
    Jen-Liang Su

Michael Hsiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hsiao', 18)}}的其他基金

SHF CORE: Small: Hybrid NLP and Formal Techniques for Synthesizing Assertions and Identifying Ambiguities from English
SHF CORE:小型:用于综合断言和识别英语歧义的混合 NLP 和形式化技术
  • 批准号:
    2101021
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF:Small:Design Validation Using Multiple Concurrent Abstract Models and GPGPUs
SHF:Small:使用多个并发抽象模型和 GPGPU 进行设计验证
  • 批准号:
    1422054
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Exploring Swarm Intelligence for Design Validation
SHF:小型:探索群体智能以进行设计验证
  • 批准号:
    1016675
  • 财政年份:
    2010
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SGER: Semi-Formal Design Validation with Swarm Intelligence
SGER:使用群体智能进行半形式设计验证
  • 批准号:
    0840936
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CT-ISG: POCKET: A Technical and Behavioral Concept for Protecting Children's Online Privacy
CT-ISG:POCKET:保护儿童在线隐私的技术和行为概念
  • 批准号:
    0524052
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRCD/EI: Curriculum and Course Modules for Bridging the Verification Gap
CRCD/EI:弥合验证差距的课程和课程模块
  • 批准号:
    0417340
  • 财政年份:
    2004
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Spectral Techniques for Functional Testing of Sequential Circuits and System-On-A-Chip
职业:用于时序电路和片上系统功能测试的频谱技术
  • 批准号:
    0093042
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Spectral Techniques for Functional Testing of Sequential Circuits and System-On-A-Chip
职业:用于时序电路和片上系统功能测试的频谱技术
  • 批准号:
    0196470
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

High-precision verification method for probability of photo- and fast-neutron nuclear reactions and selection of nuclear reactions for large-scale RI production
高精度光中子核反应概率验证方法及大规模RI生产核反应选择
  • 批准号:
    22H00123
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Constraint Acquisition and Compositional Verification of Large and Complex Cyber-Physical Systems
大型复杂信息物理系统的约束获取和组成验证
  • 批准号:
    22K11969
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frameworks: Large Scale Atmospheric Research Using an Integrated WRF Modeling, Visualization, and Verification Container Framework (I-WRF)
框架:使用集成 WRF 建模、可视化和验证容器框架 (I-WRF) 进行大规模大气研究
  • 批准号:
    2209711
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
PPoSS: LARGE: Intel: Combining Learning and Formal Verification for Scalable Machine Programming (ScaMP)
PPoSS:大:英特尔:结合学习和形式验证实现可扩展机器编程 (ScaMP)
  • 批准号:
    2217064
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Computer-assisted solution verification for 3D flows with large Reynolds numbers
大雷诺数 3D 流动的计算机辅助解决方案验证
  • 批准号:
    21H00998
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computer-assisted solution verification for the Navier-Stokes equation with large Reynolds numbers
大雷诺数纳维-斯托克斯方程的计算机辅助解验证
  • 批准号:
    20KK0306
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Verification of learning effect on architectural space characteristic by simultaneous experience of virtual space with a large number of people
多人同时体验虚拟空间验证建筑空间特性学习效果
  • 批准号:
    21K04446
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fusion of Meta-Scalable Theorem Prover and Parallel Model Checker to Realize Large-Scale Fast Formal Verification
元可扩展定理证明器和并行模型检查器融合,实现大规模快速形式验证
  • 批准号:
    19K11821
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: SHF: Small: Certifiable Verification of Large Neural Networks
NSF-BSF:SHF:小型:大型神经网络的可认证验证
  • 批准号:
    1814369
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Construction of design and verification methodology for large deployable space structures through development of CubeSat demonstrator
通过开发立方体卫星演示器构建大型可部署空间结构的设计和验证方法
  • 批准号:
    17H03477
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了