Local Properties of Turbulent Flows
湍流的局部性质
基本信息
- 批准号:0306586
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns local properties of solutions of the Navier-Stokes system and other equations arising in fluid dynamics. It addresses determination of solutions of partial differential equations by observables, description and interplay of different length scales arising in turbulent flows, and existence and properties of invariant manifolds. Special emphasis is given to qualitative description of solutions, such as the study of spatial and temporal complexity of solutions, degree of vanishing, and properties of fluid vortices.Questions in fluid dynamics arise in many scientific fields, including atmospheric science, oceanography, and aerodynamics. The Navier-Stokes system, one of the most widely studied systems of partial differential equations, is one of the principal models of fluid motion. This project addresses qualitative properties of solutions of the Navier-Stokes system and related models. Potential applications include better understanding of fine structures of turbulent flows (vortices and oscillations), reconstruction of dynamics from measurements, and rigorous interpretation of numerical simulations of fluid motion.
这个项目关注的是Navier-Stokes系统和其他流体动力学方程解的局部性质。 它解决了确定的解决方案的偏微分方程的观测量,描述和相互作用的不同长度尺度所产生的湍流,存在和性质不变的流形。 特别强调解决方案的定性描述,如空间和时间的复杂性的解决方案,消失的程度,和流体涡的性质的研究。在流体动力学的问题出现在许多科学领域,包括大气科学,海洋学和空气动力学。 Navier-Stokes方程组是研究最广泛的偏微分方程组之一,也是流体运动的主要模型之一。 本计画主要研究纳维尔-斯托克斯系统及相关模型解的定性性质。 潜在的应用包括更好地理解湍流的精细结构(涡流和振荡),从测量中重建动力学,以及对流体运动的数值模拟进行严格的解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kukavica其他文献
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
- DOI:
10.1007/s00245-024-10195-6 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.700
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
- DOI:
10.1007/s00021-024-00861-8 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:1.300
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
- DOI:
10.1016/j.jde.2024.02.027 - 发表时间:
2024-06-15 - 期刊:
- 影响因子:2.300
- 作者:
Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
- DOI:
10.1016/j.jmaa.2005.01.057 - 发表时间:
2005-07-15 - 期刊:
- 影响因子:
- 作者:
Igor Kukavica;Mehmet Malcok - 通讯作者:
Mehmet Malcok
Igor Kukavica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kukavica', 18)}}的其他基金
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
- 批准号:
1615239 - 财政年份:2016
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
- 批准号:
1311943 - 财政年份:2013
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Analytical Description of an Incompressible Flow
不可压缩流的分析描述
- 批准号:
1009769 - 财政年份:2010
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
- 批准号:
0072662 - 财政年份:2000
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
相似海外基金
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Analysis and modeling of spatial and temporal non-local properties of turbulent eddy diffusivity approximation
湍流涡扩散率近似的时空非局域特性分析与建模
- 批准号:
20K04282 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
The Influence of Fuel Properties and Injection Strategies on Advanced Turbulent Jet Ignition
燃料性质和喷射策略对先进湍流喷射点火的影响
- 批准号:
2268468 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Studentship
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2018
- 资助金额:
$ 12.6万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effect of free-stream turbulence on global and local properties of turbulent boundary layers
自由流湍流对湍流边界层全局和局部特性的影响
- 批准号:
471230-2015 - 财政年份:2016
- 资助金额:
$ 12.6万 - 项目类别:
Postdoctoral Fellowships
Lagrangian aspects of turbulent superstructures: numerical analysis of long-term dynamics and transport properties
湍流上层建筑的拉格朗日方面:长期动力学和输运特性的数值分析
- 批准号:
316204571 - 财政年份:2016
- 资助金额:
$ 12.6万 - 项目类别:
Priority Programmes
Effect of free-stream turbulence on global and local properties of turbulent boundary layers
自由流湍流对湍流边界层全局和局部特性的影响
- 批准号:
471230-2015 - 财政年份:2015
- 资助金额:
$ 12.6万 - 项目类别:
Postdoctoral Fellowships
Transition and Turbulent Drag Reducing Properties of Microfibrillated Cellulose and Papermaking Fibre Suspensions in Hagen Poiseuille Flow
哈根泊肃叶流中微纤化纤维素和造纸纤维悬浮液的转变和湍流减阻特性
- 批准号:
RGPIN-2014-05544 - 财政年份:2014
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Coexistence Mechanism of Turbulent Regions with Different Statistical Properties in a Uniform System
均匀系统中不同统计特性湍流区域的共存机制
- 批准号:
25400412 - 财政年份:2013
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)